Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency.

Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks / Vo Hong, Thanh; Zunino, Roberto; Priami, Corrado. - In: IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS. - ISSN 1545-5963. - 14:3(2017), pp. 657-667. [10.1109/TCBB.2016.2530066]

Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks

Vo Hong, Thanh;Zunino, Roberto;Priami, Corrado
2017-01-01

Abstract

Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency.
2017
3
Vo Hong, Thanh; Zunino, Roberto; Priami, Corrado
Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks / Vo Hong, Thanh; Zunino, Roberto; Priami, Corrado. - In: IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS. - ISSN 1545-5963. - 14:3(2017), pp. 657-667. [10.1109/TCBB.2016.2530066]
File in questo prodotto:
File Dimensione Formato  
tcbb_rssa_cr.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 753.17 kB
Formato Adobe PDF
753.17 kB Adobe PDF Visualizza/Apri
07407338.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 956.41 kB
Formato Adobe PDF
956.41 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/153016
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact