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Efficient Constant-Time Complexity Algorithm for
Stochastic Simulation of Large Reaction

Networks
Vo Hong Thanh, Roberto Zunino, and Corrado Priami

Abstract—Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The
simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a
probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks
are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new
exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity
bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while
the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the
computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms
available in literature to demonstrate its applicability and efficiency.

Index Terms—Computational biology, Stochastic simulation, Rejection-based stochastic simulation algorithm.

✦

1 INTRODUCTION

Biological processes at molecular level are noisy due to the
discreteness of species and the randomness of reaction firings [1],
[2], [3], [4]. The effects of noise may lead to significant changes
in cellular behavior and ultimately in biological response[5],
[6]. Stochastic modeling and simulation of biological networks
provide a framework for a quantitative study of biological systems
by taking biological noise into account.

In the stochastic chemical kinetics framework, the state of
the system is modeled as a vector of population of each molec-
ular species. The interactions of species to produce necessary
substances for cells are encoded by chemical reactions between
species. The occurrence of a reaction event is associated with a
probability that is proportional to apropensity, which depends
on the reaction kinetics. The dynamic behavior of the biochem-
ical network is fully described by the chemical master equation
(CME) [7] and its solution can be realized by an exact simulation
procedure called the stochastic simulation algorithm (SSA) [8],
also known as the direct method (DM) [9]. SSA is exact in the
sense that it selects a reaction firing and moves the system toa
new state according to a probability distribution that is derived
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under the same hypothesis as CME. Recently, extensions of SSA
have been introduced for considering environmental effects such
as biochemical reactions with time-dependent rates [10], [11],
[12], [13], reactions with delay times [12], [14], [15], [16], and
inhomogeneous space [17], [18].

The performance of SSA for large reaction networks is pro-
hibitively expensive due to two main factors: searching fornext
reaction events, and updating propensities of reactions. In addition
many simulation runs must be performed in order to obtain a
reasonable statistical estimation of the system behavior that further
pronounce the performance problem of SSA. Different formula-
tions to accelerate these simulation steps of SSA are introduced to
improve its performance in simulating large, complex biochemical
reaction networks. The next reaction method (NRM) [19] uses
a binary heap to extract the reaction firing. It also employs a
reaction dependency graphto decide which reactions update their
propensities after a reaction firing. The optimized direct method
(ODM) [20], [21] improves the search for next reaction firings by
sorting reactions in descending order of propensities. The multi-
dimensional search accelerates the search for next reaction firings
by dividing reactions into groups [22]. The selection of the next
reaction firing by the multi-dimensional search is composedof
selecting a group and locating the next reaction within thatgroup.
The finest strategy for grouping of reactions is when each group
contains only two reactions which is equivalent to a tree structure
where reactions are stored on its leaves. The selection in this
case is a tree traversal procedure [23], [24], [25], [26]. TheSSA
with composition rejection search strategy (SSA-CR) [27], [28]
also groups reactions into groups, but the selection of the next
reaction firing in a group employs a rejection-based sampling
instead. The search cost of the SSA-CR is only depending on the
number of groups. So, the performance of SSA-CR is contributed
mostly by the propensity update cost. The partial-propensity
direct Method (PDM) [29], [30], [31] is a special formulation of
DM for improving the simulation performance by exploiting the
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special form of themass-actionpropensity function ofelementary
reactions(reactions with at most two reactants). PDM factorizes
propensities of reactions into partial propensities and groups these
partial propensities by their common reactants. Thus, after a
reaction firing, PDM can update propensities of reactions with
the shared reactant collectively in one operation. The partial-
propensity approach, however, is limited to class of reactions
involving at most two reactants and their propensities mustbe
factorizable [30]. PDM does not apply if the model has reactions
having more than two reactants (e.g., trimolecular reactions [32])
or a complex propensity function applied (e.g., Michaelis-Menten
kinetics [33]).

The rejection-based stochastic simulation algorithm
(RSSA) [16], [35] is introduced recently to accelerate the
exact simulation. It is specifically tailored for reaction networks
where complex propensity functions are applied. For instance,
RSSA [13] is able to generate exact trajectory for nontrivialcases
where the reaction propensity takes a very complex function
(e.g., steep sigmoidal form), while existing algorithms introduces
approximations because the computation by these algorithms is
very demanding and simplifying assumptions are introduced. The
principle of RSSA is using propensity bounds of reactions to
select next reaction firings. The propensity bound of a reaction is
an interval bounding all possible concrete propensity values of
the reaction. The propensity bounds of reactions are derived by
specifying an arbitrary bound on the population of each species,
which is called fluctuation interval or abstract state. RSSA
updates the propensity bounds infrequently, only when the state
moves out of its fluctuation interval. We remark that the choice
of the fluctuation interval and propensity bounds does not affect
the exactness of RSSA, but only its efficiency. RSSA selects the
next reaction firings in two steps. First, a candidate reaction is
randomly selected proportionally to its propensity upper bound.
Then, a rejection-based test is performed to ensure that the
selected reaction fires with the same probability determined by
SSA. The evaluation of the exact propensity of the candidate
reaction which is required by the rejection test in RSSA is
postponed by exploiting its propensity lower bound. The exact
propensity is evaluated only if needed. If a reaction is accepted
to fire, only the state is updated and the next simulation step
is performed without recomputing the propensity bounds. Only
in uncommon cases when the population of a species exits its
fluctuation interval, a new fluctuation interval for this species is
defined. The propensity bounds of reactions as well have to be
updated to reflect the changes. Improvements of RSSA [13], [34]
have been introduced to improve its efficiency and applicability.
For instance, the simultaneous RSSA (SRSSA) is an efficient
formulation of RSSA to support the simulation analysis. SRSSA
is able to generate many trajectories simultaneously in a single
simulation run. It utilizes a single data structure across all
simulations to select the reaction firings to form a trajectory of
each simulation. The memory requirement for SRSSA is thus
independent of the number of generated trajectories.

We present in this paper a new algorithm, called RSSA-
CR, to efficiently simulate large-scale biochemical reactionnet-
works. RSSA-CR exploits the composition-rejection search onthe
propensity bounds to select next reaction firings. The reactions
in RSSA-CR are grouped by their propensity upper bounds.
Therefore, the search cost for the selection of reaction firings
in RSSA-CR is only proportional to the number of groups and
independent of the number of reactions. After a reaction firing,

RSSA-CR only updates the system state, while the propensity
bounds as well as underlying data structure do not need to
be updated. The propensity updates are performed only when
necessary. Furthermore, RSSA-CR recomputes propensity bounds
locally for only reactions affected by the species whose population
exits the fluctuation interval by using aspecies-reaction (SR)
dependency graph[16]. RSSA-CR is thus providing a significant
improvement for both the search and propensity updates, and
makes it suitable for simulation of large, complex networks. For
models in which the ratio between the largest propensity andthe
smallest one is bounded and the SR dependency graph is sparse,
the computational time complexity of RSSA-CR is constant.

The paper is organized as follows. Section 2 provides the back-
ground of SSA for simulating biochemical reactions. Section 3
presents our new RSSA-CR algorithm. We describe in detail how
to employ the composition-rejection search on propensity bounds
to select the next reaction firing in order to improve both thesearch
and propensity updates of the simulation. Section 4 shows the
numerical results of our new algorithm on concrete models acting
as benchmarks to demonstrate the applicability and efficiency with
respect to the state of the art of SSA optimization. The concluding
remarks are in section 5.

2 STOCHASTIC SIMULATION ALGORITHM

We consider a well-mixed biochemical reaction network con-
sisting of N molecular species labeledSi for i = 1 . . . N .
The stateX(t) of the system at a timet is a N -vector
X(t) = (X1(t), ..., XN (t)) whereXi(t) is the absolute number
of molecules of speciesSi in the system at the time. Species
interacts with each other to produce other species throughM
reactions. Each reactionRj for j = 1 . . .M has a general form.

Rj : v1jS1 + ...+ vnjSn

cj
→ v′1jS1 + ...+ v′njSn (1)

wherecj is the stochasticrate constant. The species on the left
side of the arrow are calledreactants, while the ones on the right
side are calledproducts. The non-negative integervij and v′ij ,
respectively, calledstoichiometric coefficients, denote how many
molecules of a reactant are consumed and how many molecules of
a product are produced.

A reactionRj in the stochastic chemical kinetics is character-
ized by two measurements that are: apropensityaj and a state
change vectorvj . The propensityaj is a state-dependent function
defined so thataj(X(t))dt gives the probability of reactionRj

occurring in the the next timet+ dt given the system stateX(t)
at time t. The state change vectorvj characterizes how many
molecules of each species in the stateX(t) changes due to an
occurrence ofRj . Theith element of the state change vectorvj is
equal tov′ij − vij . Thus, an occurrence ofRj moves the system
from stateX(t) at timet to a new stateX(t + τ) = X(t) + vj
given thatRj is selected to fire at timet+ τ .

An exact formula for the propensity of a reaction is depending
on the chemical kinetics applied for the system under study.This
is referred to as thefundamental hypothesisof the stochastic
chemical kinetics [7], [8]. For mass action kinetics, propensity
aj of a reactionRj exists and is defined by:

aj(X(t)) = cjhj(X(t)) (2)

wherecj is the stochastic rate constant andhj(X(t)) counts the
number of distinct combinations of reactants involved inRj , given
the stateX(t) at timet. In case of thesynthesis reaction(or source
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reaction) where species are produced from an external source, the
number of combinations of reactants ishj(X(t)) = 1.

The probability distribution of the system state, by the stochas-
tic chemical kinetics formulation, is completely described by
the chemical master equation (CME) [7]. The solution of CME,
however, is hard to find analytically or numerically due to the high
dimensional state space, even though recent work [36], [37]tries
to numerically solve CME with a predefined tolerant error. The
stochastic simulation algorithm (SSA) [8], [9] is an alternative
approach for solving CME. SSA does not explore the whole state
space, but only realizes a possible new state by firing one reaction
at a time. SSA realizes a trajectory of the reaction network by
sampling the joint probability density function (pdf)p(τ, µ) with
p(τ, µ)dτ defining the probability that reactionRµ fires in the
next infinitesimal timet + τ + dτ , given the system having state
X(t) at timet. The analytical form ofp(τ, µ) is given as:

p(τ, µ) = aµexp(−a0τ) (3)

wherea0 =
∑M

j=1 aj . Integratingp(τ, µ) over τ from 0 to ∞
gives that the probability that reactionRµ occurring in the next
time is a discrete probabilityaµ/a0. Summingp(τ, µ) over all
possible reaction index from1 to M gives that the probability
distribution of the firing timeτ is an exponential distribution
Exp(a0). The behavior of the system given a sufficient number
of SSA realizations is ensured to converge to the result of CME.

SSA samplesp(τ, µ) and constructs a simulation trajectory as
follows (see Algorithm 1). It computes propensitiesaj for j =
1 . . .M at the beginning. Then, each SSA simulation step selects
the next reaction firingRµ and its firing timeτ by:

τ =
1

a0
ln

(

1

r1

)

(4)

µ = smallest reaction index such that:
µ
∑

j=1

aj > r2a0 (5)

wherer1 andr2 are random numbers from a uniform distribution
U(0, 1). Knowing the next reaction firing and its firing time, SSA
advances time tot + τ and updates the state according to the
selected reactionRµ to a new stateX(t + τ) = X(t) + vµ. It
then updates propensities of reactions to reflect the changes in the
system state.

Algorithm 1 SSA
1: time t = 0 with state vectorX = x

2: compute propensityaj for j = 1 . . .M anda0 =
∑M

j=1 aj
3: while (t < Tmax) do
4: computeτ = (1/a0) ln(1/r1) with r1 ∼ U(0, 1)
5: select minimum reaction indexµ s.t.

∑µ
j=1 aj > r2a0 with

r2 ∼ U(0, 1)
6: advance timet = t+ τ and stateX = X + vµ
7: update propensityaj for j = 1 . . .M and total suma0
8: end while

For simulation of large reaction networks, the computational
cost of SSA in Alg. 1 is largely dominated by the cost of the search
for next reaction firings (line 5) and the cost of propensity updates
after each reaction firing (line 7).

The selection of the next reaction firing in SSA is inefficient
because it increases linearly with the number of reactions.The

search time complexity can be improved by the composition-
rejection search (SSA-CR). SSA-CR reduces the search by group-
ing reactions and applying the acceptance-rejection for selecting
the next reaction in the group. SSA-CR groups a reactionRj into
a groupGi if its propensityaj satisfies2qi−1 ≤ aj ≤ 2qi . The
index qi of the groupGi is thus computed byqi = [log(aj)]
where the truncation operator[x] returns the largest integer not
greater thanx. The selection of the next reaction firing in SSA-
CR is composed of two steps. First, it selects the groupGl, which
contains the next reaction firing. Then, the next reaction firingRµ

in the groupGl is located by applying the acceptance-rejection
with hat function2ql . The average number of rejection tests to
select the next reaction firingRµ is bounded by2 because of
aµ/2

ql ≥ 1/2. Therefore, the selection of next reaction firings of
SSA-CR depends only on the number of groups. If the number of
groups is bounded by a small constant, the search time complexity
of SSA-CR is constant.

A naive implementation for propensity updates after a reaction
firing is to recompute all propensities of reactions. This approach
has linear time complexity with the number of reactions. An
advanced approach will update only propensities of reactions
affected by the reaction firing. This is done by employing the
reaction dependency graph [19] that is a directed graph showing
the dependency of reactions in the network. A directed edge
from reactionRj to reactionRi exists if firing Rj affects the
propensity of reactionRi and urgesRi to recompute its propen-
sity. The dependency graph reduces the number of propensity
updates to model-dependent. Thus, if 1) the number of reactions
which requires to update their propensities after a reaction firing
is bounded by a small constant (i.e., the dependency graph is
sparse) and 2) the propensities do not vary significantly, then the
computational cost of SSA-CR is constant time complexity. The
dependency graph of practical models, however, is often dense
and highly connected. The propensity update cost is high, which
often contributes about65% to 85% to the total simulation time.
Especially, for some special models where the number of affected
reactions by a reaction firings isO(M), the propensity update cost
contributes even up to99% of the simulation time.

3 REJECTION-BASED ALGORITHM WITH

COMPOSITION-REJECTION SEARCH

We present in this section our new algorithm RSSA-CR to
accelerate stochastic simulation of large reaction networks by
employing the composition-rejection on the propensity bounds.
We first review the principle of the rejection-based stochastic
simulation algorithm (RSSA) for selection of reaction firings by
using propensity bounds. Then, we present the details of data
structures and procedure of RSSA-CR to optimize both of the
computationally expensive steps of the simulation discussed in
the previous section. The selection of reaction firings in RSSA-
CR is independent of the number of reactions and bounded only
by the number of groups. The propensity updates of RSSA-CR
are avoided and performed infrequently. Furthermore, by using a
Species-Reaction (SR) dependency graph, propensity updatesin
RSSA-CR can be preformed locally.

3.1 Background on RSSA

The rejection-based stochastic simulation algorithm (RSSA) [16],
[34], [35] is an exact simulation algorithm. RSSA correctly selects
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the next reactionRµ to fire with probability aµ/a0 and its
firing time τ is drawn from an exponential distributionExp(a0)
(see Thanhet al. [16] for a complete proof of its correctness).
RSSA accelerates the simulation by reducing average number of
propensity updates during the simulation. The propensity updates
are avoided and collapsed as much as possible by making use of
propensity lower boundaj and upper boundaj of each reaction
Rj to select reaction firings. The propensity bounds of reactions
are derived by bounding the populationXi(t) of each species
Si to an arbitraryfluctuation interval[Xi, Xi]. The constraint
X(t) ∈ [X,X] holds for each species on the stateX(t). The
propensity bounds for reactions are computed by applying an
interval analysis or an optimization technique [39]. For mass-
action kinetics, the computation ofaj andaj is easy by making
use of its monotonic property.

The selection of reaction firings by using propensity boundsis
performed in two steps. First, a candidate reactionRµ is selected
with probabilityaµ/a0 wherea0 =

∑M
j=1 aj . The candidateRµ

then enters a rejection test for validation with success probability
aµ/aµ. The validation requires computing the exact propensity
aµ, but it is postponed by using the fact that if the candidateRµ

is accepted with probabilityaµ/aµ then it is also accepted with
probabilityaµ/aµ because of the inequalityaµ/aµ ≤ aµ/aµ. If
Rµ is accepted through the rejection test, its firing time is gen-
erated. The firing time of an accepted candidateRµ is generated
following anErlang(k, a0) distribution wherek is the number
of trials until it is accepted. In caseRµ is rejected, a new candidate
reaction will be selected.

A simple strategy for realizing the candidate reactionRµ is
to represent theM propensity upper boundsaj for j = 1 . . .M
by an array of sizeM and linearly accumulates propensity upper
bounds until a smallest reaction indexµ satisfying

∑µ
j=1 aj >

r ·a0 wherer ∼ U(0, 1). This search strategy is efficient for small
models because it does not require to build any complex data
structure. However, the search will become very computational
expensive for large models because its computational cost is
linearly increasing with the number of reactions, i.e.,O(M).
Improvements for the search of the candidate reaction have been
introduced to improve the performance of RSSA [34]. The tree-
based search reduces the computational cost to logarithmictime
complexity by employing a binary tree structure where theM
propensity upper boundsaj are stored in the leaves and the inner
nodes store the sums of values of child nodes. A candidate reaction
is realized by traversing the tree from the root to a leaf thatholds
the reaction. The computational time complexity for selection of
the candidate reaction by the tree-based search is equal to the
height of the tree that isO(logM). However, if the propensity
upper bound of a reaction at a leaf changes, the change must
be propagated from the leaf to the tree root which also takes
O(logM). The computational cost for selection of a candidate
reaction can be further reduced to constant time, i.e.,O(1), by
applying the table lookup search at the cost of pre-processing for
building lookup tables. The principle of the table lookup search
is to distributeM probabilities aj/a0 for j = 1 . . .M into
lookup tables so that the selection of a candidate reaction given its
probability only takes one comparison and (at most) two memory
accesses to the lookup tables. The disadvantage of the tablelookup
search is that if the probability of a candidate reaction changes,
the whole lookup tables must be rebuilt which takesO(M) time
complexity.

Fig. 1. Steps for the selection of the next reaction firing in RSSA-CR. a)
There are 9 reactions. The bars represent the values of propensity upper
bounds of reactions varying from 1 to 8. b) Reactions are grouped into
K = 3 groups by their propensity upper bounds. Group 3 is selected. c)
A candidate reaction in the selected group is randomly and uniformly
selected by a rejection test. First, reaction R2 (point A) is randomly
selected but is rejected. Reaction R6 is then selected and accepted
(point B). d) Reaction R6 is validated through a second rejection test and
is accepted because the random value (point C) is less than the exact
propensity a6. Note that since the grouping of reactions in RSSA-CR is
using the propensity upper bounds, the exact propensity of a reaction
may not satisfy the condition of the group.

3.2 RSSA with Composition-Rejection Search

RSSA-CR employs the composition-rejection search on the
propensity bounds to improve both the search and propensityup-
date cost in simulating large reaction networks. It groups reactions
into K groups labeledG1 . . . GK . The condition to put a reaction
Rj into a groupGi depends on upper bound propensityaj . Specif-
ically, Gi contains reactionRj if the condition2qi−1 ≤ aj ≤ 2qi

holds. In other words, reactionRj will be put into the groupGi

with indexqi = [log(aj)] in which [−] is the truncation operator.
Let pi =

∑

Rj∈Gi
aj be the sum of the propensity upper bounds

of reactions in groupGi and letp0 =
∑K

i=1 pi =
∑M

j=1 aj be
their total sum. The selection of the next reaction firing by RSSA-
CR is a two-step search composed of selecting the group and then
locating the next reaction firing within that group. Figure 1depicts
the steps for the selection of the next reaction firing in RSSA-CR.

First, RSSA-CR selects a candidate groupGl with probability
pl/p0. The selection of the candidate groupGl is done by
simply linearly summingpi until a minimum indexl such that
∑l

i=1 pi > r1 · p0 is found wherer1 ∼ U(0, 1). A binary tree-
based search [25] can be applied to reduce the time complexity if
the number of groupsK is large.

Knowing the groupGl, a reactionRµ is randomly and uni-
formly selected and goes through a validation test to be accepted
for firing. A random numberr2 ∼ U(0, 1) is drawn and used
to compute a random reaction indexµ = [r2 · |Gl|] in which
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|Gl| returns the cardinality of groupGl and [−] denotes the
truncation operator. The validation of the candidateRµ requires
two consecutive rejection tests as follows. The first rejection test
will accept reactionRµ as a candidate with acceptance probability
aµ/2

ql . This test does not need to generate a new random number
by noting thatr3 = r2 · |Gl|−µ is randomly distributed in(0, 1).
RSSA-CR checks whetherr3 ≤ aµ/2

ql . If the condition is true,
Rµ will go through the second rejection test to decide whether it is
accepted to fire. In case the conditionr3 ≤ aµ/2

ql is false, a new
Rµ in Gl is selected until it is accepted. For the second rejection
test, RSSA-CR generates a random numberr4 from U(0, 1) and
checks whetherr4 ≤ aµ/aµ which requires to compute exact
propensityaµ. If this check returns true, reactionRµ is accepted to
fire and its firing time is generated. Note that the propensitylower
boundaµ can be used in this second rejection test to postpone
computing ofaµ as much as possible. If the conditionr4 ≤ aµ/aµ
is false, the candidate is rejected. At this point, RSSA-CR hasto
reject also the candidate groupGl. In other words, RSSA-CR
repeats the whole selection of a new group and then a candidate
reaction in the group for validation. The search of next reaction
firings in RSSA-CR is therefore sometimes requiring more com-
putational effort; however, this additional computational cost is
small because it is only proportional to the number of groupsK,
which is often bound by a small constant and independent of the
number of reactions.

If reactionRµ is accepted, its firing timeτ is generated from
anErlang(k, p0) distribution. However, the difference between
RSSA and RSSA-CR is that the number of trialsk in RSSA-CR
counts only for the second rejection test (i.e., the number of times
performs the second rejection test on a candidate reaction after it
is accepted by the first rejection test).

3.3 The RSSA-CR Algorithm

The complete RSSA-CR algorithm for exact stochastic simulation
of large reaction networks is outlined in Alg. 2. The output of an
RSSA-CR simulation run is a trajectory showing the temporal
dynamics of the biochemical reaction network starting at time
t = 0 with an initial statex and ending at timeTmax.

Line 3 defines for each speciesSi, for i = 1 . . . N , a
fluctuation interval[Xi, Xi] around its current populationXi(t).
The fluctuation interval is defined as[Xi, Xi] = [(1−δi)Xi, (1+
δi)Xi] whereδi is a parameter. For typical models, the parameter
δi chosen around10% to 20% of current populationXi(t) gives
better performance (see Sec. 4). In caseXi(t) is small, an absolute
interval size∆ is used instead [34]. RSSA-CR then computes for
each reactionRj , j = 1 . . .M , a propensity lower boundaj and
a propensity upper boundaj (line 4). The needed data structure
for the simulation are set up in lines 5 - 6 where reactions are
grouped intoK groupsGi with i = 1 . . . K based on their
propensity upper boundsaj . We remark that the base2 in the
condition for grouping reactions can be chosen arbitrarily. The
algorithm would work as well with any other base> 1. If it is
a small number, then we have more groups which increases the
cost for selecting a group. In the other case, if the base is a large
number, we have less groups but the number of rejections of a
reaction is high. The base2 is often chosen because it can be
done by a singlelog operation of a programming language [28].
The groups in our implementation are maintained dynamically
by using a dequeue and are arranged in descending order ofpi
to speed up the selection of the group [22]. To decide which

reactions should update their propensity bounds if a species exits
its fluctuation interval, RSSA-CR employs the Species-Reaction
(SR) dependency graphG which is a directed bipartite graph
showing the dependency of reactions on species [16]. The SR
dependency graphG contains a directed edge from a speciesSi to
a reactionRj if a change in the population of speciesSi requires
reactionRj to recompute its propensity. The SR dependency graph
G is built once at the beginning of the simulation at line 2.

Algorithm 2 RSSA-CR
1: initialize timet = 0 and state vectorX = x

2: build the species-reaction (SR) dependency graphG
3: define a bound[Xi, Xi] for eachXi in X with i = 1 . . . N
4: compute an upper boundaj and a lower boundaj for Rj ,

j = 1 . . .M
5: groupM reactions intoK groupsG1, . . . , GK so that group

Gi containsRj with 2qi−1 ≤ aj ≤ 2qi for j = 1 . . .M
6: compute for groupGi thepi =

∑

Rj∈Gi
aj with i = 1 . . . K

and sump0 =
∑K

i=1 pi =
∑M

j=1 aj
7: while (t < Tmax) do
8: repeat
9: setaccepted = false

10: setu = 1
11: repeat
12: select minimum group indexl s.t.

∑l
i=1 pl > r1 · p0

with r1 ∼ U(0, 1)
13: repeat
14: compute indexµ = [r2 · |Gl|] with r2 ∼ U(0, 1)
15: setr3 = r2 · |Gl| − µ
16: until (r3 ≤ aµ/2

ql )
17: generater4 ∼ U(0, 1)
18: if (r4 ≤ aµ/aµ) then
19: setaccepted = true
20: else
21: evaluateaµ with stateX
22: if (r4 ≤ aµ/aµ) then
23: setaccepted = true
24: end if
25: end if
26: setu = u · r5 with r5 ∼ U(0, 1)
27: until accepted
28: compute firing timeτ = (−1/p0) ln(u)
29: update timet = t+ τ and stateX = X + vµ
30: until (existsXi /∈ [Xi, Xi])
31: for all (Xi /∈ [Xi, Xi]) do
32: define a new[Xi, Xi] aroundXi

33: for all (Rj ∈ ReactionsAffectedBy(Si)) do
34: compute boundsaj andaj
35: update groupGi with its pi for i = 1 . . . K and sum

p0
36: end for
37: end for
38: end while

The selection of the next reaction firing by the composition-
rejection search on the propensity bounds in RSSA-CR are imple-
mented in lines 11 - 27. The search is repeated until a reactionRµ

is accepted to fire. In line 28, RSSA-CR generates the reaction
firing time τ . RSSA-CR maintains a variableu, initialized to1 in
line 10, by multiplying it with a random numberr5 (line 26) each
time the second rejection test performed.
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Knowing the reaction firingRµ and its firing timeτ , the time
is advanced tot = t + τ and the state is updated to a new state
X = X + vµ. Line 30 checks whether the species population
is confined in its fluctuation interval. If this is the case, a new
search for the next reaction firing is performed without the need
for updating the propensity bounds as well as the groups. In
the uncommon case there exists a speciesSi whose population
Xi /∈ [Xi, Xi] and RSSA-CR has to define a new fluctuation
interval around the current population of this species and update
propensity bounds of reactions. Let ReactionsAffectedBy(Si) be
set of reactions which should update their propensity bounds if
speciesSi moves out of its fluctuation interval extracted from the
SR dependency graphG. RSSA-CR will recompute the propensity
bounds for each reactionRj in ReactionsAffectedBy(Si). The
corresponding groupGi holding Rj as well has to update its
pi and the total sump0. In case the upper bound propensity of
reactionRj does not satisfy the constraint of the groupGi, it has
to be moved to another group. These steps are implemented in
lines 31 - 37.

3.3.1 Correctness of RSSA-CR

RSSA-CR is an exact algorithm, in that the distribution of the
generated trajectories is precisely the one given by the pdfp(τ, µ)
in Eq. 3. Hence, RSSA-CR is equivalent to other exact stochastic
simulation algorithms such as DM or RSSA. We now provide a
sketch of the correctness argument.

We start by analyzing the group selection step in Alg. 2, which
is performed in line 12. There, we use linear search to selecta
candidate groupGl with probability

P(candidate groupGl) =
pl
p0

(6)

After that, we select a candidate reactionRµ within group
Gl. This is done using a rejection mechanism in the loop at
lines 13-16. Inside such loop, reaction indexµ is generated
according to a discrete uniform distribution, whiler3 follows a
continuous uniform distribution, independent fromµ. Outside the
rejection loop, the distribution ofµ becomes conditioned by the
r3 ≤ aµ/2

ql test. Since2ql is an upper bound for eachaµ, the
probability mass of each possibleµ outcome is proportional toaµ.
Hence,

P(candidate reactionRµ | candidate groupGl) =
aµ

∑

Rj∈Gl
aj

=
aµ
pl

(7)

Combining Eq. 6 and Eq. 7 and applying the probability chain
rule, we get the probability of the candidate reactionRµ as

P(candidate reactionRµ) =
aµ
p0

(8)

which is the same probability used in RSSA for candidate reac-
tions. From this point, the correctness argument of RSSA can be
adapted. The computed firing timeτ can be shown to follow the
Erlang(k, p0) distribution wherek is the number of rejections
in the outermost loop (11-27) before a candidate reactionRµ

is accepted. Indeed, a convolution method is used in line 28
to sampleτ from such distribution. This ensures that the final
trajectory distribution is the wanted one [16].

3.3.2 Complexity of RSSA-CR
We now analyze the time complexity for each simulation iteration
of RSSA-CR in Alg. 2 assuming basic mathematical operations
(such as+, −, ×, /, [−], log) to be taken in constant time. The
computational time of RSSA-CR is composed of two parts that
are: 1) the cost for selection of a reaction firing in lines 11 -27 and
2) the cost for updating reaction propensity bounds of reactions in
lines 31 - 37. Note that the update is performed infrequentlyand
only when there exists a species exiting its population interval.

For selection of a reaction firing, RSSA-CR selects group
Gl by a linear search (line 12) which takesO(K) time com-
plexity where K is the number of groups. It then selects a
candidate reactionRµ by the first rejection (lines 13 - 16) in
which the acceptance probability isaµ/2ql ≥ 1/2 because of
aµ ≥ 2ql−1. The last step validates the candidate reaction by the
second rejection (lines 17 - 25) whose acceptance probability is
aµ/aµ ≥ aµ/aµ. The acceptance probability of the next reaction
firing Rµ is thus bounded byaµ/(2aµ). In other words, the
average number of times that the validation test is performed
to accept the reaction isα = (2aµ)/aµ. The number of tests
α is depending only on the ratio of the propensity upper bound
and lower bound of the reaction which can be tuned through the
fluctuation interval[X,X]. Specifically, letRµ be a unimolecular
reaction of reactantSi. The mass-action propensity of the reaction
has formaµ = cµXi and the fluctuation interval of the species
is defined[Xi, Xi] = [(1 − δi)Xi, (1 + δi)Xi]. The ratio of
the propensity upper bound over its lower bound is equal to
aµ/aµ = (1 + δi)/(1− δi). Therefore, withδi is chosen around
10% to 20%, the average number of tests is bounded between
2.44 ≤ α ≤ 3. For a bimolecular reactionRµ, a similar derivation
gives2.98 ≤ α ≤ 4.5. To conclude, the total computational cost
for the selection of a reaction firing isO(K).

For the propensity update cost, letD be the average number of
reactions affected by a species in the set ReactionsAffectedBy(Si).
The cost for updating propensity bounds and groups affectedby a
species in lines 33 - 36 isO(D). Because the number of species
involved and caused by the reaction firing to move out of their
fluctuation intervals is a small number, the total update cost for
reactions which affected by those species isO(D).

Summing up, the cost of simulating one reaction in RSSA-CR
is O(K + D). For models where the number of groupsK and
the number of reactions affected by a speciesD are bounded by
a small constant, the computational time complexity of RSSA-CR
is O(1).

4 BENCHMARK

We report in this section the performance study of our new
RSSA-CR algorithm in simulating large models. The benchmark
consists of three biological models: the B cell receptor signaling,
the Linear chain and the Colloidal aggregation network. The B
cell receptor signaling model is a real biological model having
a large number of reactions which we use to demonstrate the
applicability of RSSA-CR on a large-scale reaction network.
The Linear chain and the Colloidal aggregation network are
artificial models which are used to demonstrate the scalability of
our algorithm in different contexts. For the Linear chain model,
the number of reactions increases linearly with the number of
species and the number reactions needs updating its propensity
after a reaction firing is fixed by a constant. In contrast, the
number of reactions in the Colloidal aggregation model increases
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as the square of the number of the species and the number of
reactions needs updating its propensity after a reaction firing is
increasing linearly with the number of species. All the simula-
tion algorithms in this section were implemented in Java and
run on an Intel i5-540M processor. The implementation of the
algorithms as well as the benchmark models are freely available
at http://www.cosbi.eu/research/prototypes/rssa.

4.1 B cell receptor signaling model

The B cell receptor (BCR) is an antigen (Ag) receptor located
on the B cell’s outer surface. It is composed of a membrane-
bound immunoglobulin molecule (Ig) and a transmembrane pro-
tein CD79, which is composed of two disulfide-linked chains
called CD79A (Ig-α) and CD79B (Ig-β). The binding of Ags
to the membrane Ig subunit stimulates the receptor aggregation
and transmits the signals to the cell interior through the Ig-α/β
subunits. BCR aggregation activates Lyn and Fyn of the Src family
protein tyrosine kinases (SFKs) as well as other tyrosine kinases
and initiates the BCR signaling pathway. The BCR signaling in
turn activates multiple signaling cascades which results in many
possible effects to the fates of B cells including proliferation,
differentiation and apoptosis [40], [41], [42], [43]. The BCR
receptor signaling pathway is thus therapeutic target in various
neoplasms in cancer [44].

We consider the BCR signaling model developed in Baruaet
al. [45] to study the effects of Lyn and Fyn redundancy to the
pathway. The model includes two feedback loops. The first loop
is a positive feedback loop that emanates upon the SFK-mediated
phosphorylation of BCR and receptor-bound Lyn and Fyn. The
positive feedback loop increases the kinase activities of Lyn and
Fyn. The second one is a negative feedback loop arising from
SFK-mediated phosphorylation of the transmembrane adapter
protein PAG1 (phosphoprotein associated with glycosphingolipid-
enriched microdomains) which in turn decreases the kinase activ-
ities of Lyn and Fyn. The BCR signaling model [45] consists
of 1122 species and24388 reactions. The average number of
reactions updating their propensities after a reaction firing is about
546.

The performance of RSSA-CR in simulating the BCR sig-
naling model is compared with SSA with composition-rejection
search (SSA-CR), Partial-propensity SSA with composition-
rejection search (PSSA-CR). PSSA-CR is an efficient variant of
the stochastic simulation algorithm with composition-rejection
search [31]. PSSA-CR uses two composition-rejection search
to select the next reaction firing. We also compares RSSA-CR
with other RSSA variants that are: RSSA with tree-based search
(RSSA-Binary) and RSSA with table lookup search (RSSA-
Lookup) [34]. The fluctuation interval of the species used by
RSSA is±10% of current state. If the population of a species
is less than25, the absolute interval size∆ = 5 is used to define
the fluctuation interval of this species.

Figure 2 shows performances of simulation algorithms on the
BCR signaling model. For each algorithm, the performance of a
simulation run is recorded after107 steps. The state are written
to file after each105 steps, thus having in total100 time points.
The performance result is averaged by100 independent simulation
runs. Three measurements are considered for each algorithm: 1)
the search time which is the CPU time spent for the selection
of reaction firings, 2) the propensity update time which is CPU
time spent for the update of propensities of reactions aftereach

Fig. 2. Performance of SSA-CR, PSSA-CR, RSSA-Binary, RSSA-
Lookup and RSSA-CR on simulating the B cell receptor signaling model.
The figures on the left show the times spent for the search of next
reaction firings (top plot), the propensity update (middle plot) and the
total simulation time (bottom plot) which is the sum of search time,
propensity update time and all other tasks (e.g., recording state and
writing result to file). The figures on the right show the corresponding
values in logarithmic scale.

reaction firing and 3) the total simulation time which is the sum
of the search time, the propensity update time and the time spent
for all other tasks (e.g., recording state and writing into external
files).

The overall conclusion from bottom plot of Fig. 2 is that
RSSA-CR has the best performance in comparison with all other
algorithms. For the composition-rejection approach, RSSA-CR
algorithm is especially better in comparison with SSA-CR and
PSSA-CR in simulating the B cell receptor signaling model.
Specifically, RSSA-CR is8.5 times faster than PSSA-CR and
respectively,200 times faster than SSA-CR. The significant speed
up of RSSA-CR in comparison with SSA-CR and PSSA-CR
comes from the significant reduction in the cost of propensity
updates while still have comparable search time. The detailed
comparison of algorithms follows.

The top plot in Fig. 2 shows the search time of RSSA-CR
which is slightly slower than SSA-CR and PSSA-CR. This is
because of more effort spent by RSSA-CR for selecting next
reaction firings. The acceptance probability of a reaction in RSSA-
CR is around65%, while this value in RSSA-Binary and RSSA-
Lookup is 80%. However, the search time of RSSA-CR is still
better in comparison with RSSA-Binary. The speed up gain in the
search of RSSA-CR in comparison with RSSA-Binary is about3
times. By employing the lookup table search, the search of RSSA-
Lookup achieves the best performance.

The more effort spent for the search of RSSA-CR is com-
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pensated by a huge improvement in propensity update time. The
number of propensity updates of PSSA-CR and SSA-CR is107

since they have to update propensities of reactions after each
reaction firing. The update cost of PSSA-CR is smaller than
SSA-CR because the update of propensities with shared reactants
in PSSA-CR is performed collectively in single operation. The
number of propensity updates for RSSA-CR is only900 times,
which is significantly reduced in comparison with107 times by
PSSA-CR and SSA-CR. Thus, the update cost of RSSA-CR is
nearly20 times faster than PSSA-CR, and around700 times faster
than SSA-CR. For all RSSA variants, the propensity update time
of RSSA-CR is the best, while this cost for RSSA-Lookup is
the worst. Note that SR dependency graph cannot be applied for
RSSA-Lookup. The lookup tables used in RSSA-Lookup has to
be rebuilt anytime the propensity bound of a reaction is changed,
although the update cost of RSSA-Lookup is still better than
SSA-CR. The propensity update time of RSSA-Binary is slower
than RSSA-CR because each time propensity bound of a reaction
changes, it has to be propagated along the tree through the leaf
holding the reaction to tree root to reflect the change. While
RSSA-CR only has to update the groups and move reactions
between groups when necessary. The propensity update cost of
RSSA-CR is nearly10 and30 times faster than RSSA-Binary and
RSSA-Lookup, respectively.

4.2 Linear chain system

The linear chain model is an artificial model that is used to
measure the scalability of RSSA-CR when the propensity updates
contributed a small percentage in the total simulation time. The
search for next reaction firings contributes most to the simulation.

The model consists ofN speciesSi with i = 1 . . . N in which
a species is transformed to the speciesSj such that

Si
ci→ Sj , for i = 1 . . . N andj = (i+ 1) mod N (9)

whereci is the rate constant of the transformation. The number of
reactionsM in the linear chain is equal to the number of species,
i.e., M = N . The number of affected reactions which needs to
update their propensities in the Linear chain model is fixed by 2.
In this experiment, the kinetics rate of all reactions is setto ci = 1
for i = 1 . . . N . The initial population of each speciesSi for
i = 1 . . . N is randomly taken from0 and10000. The fluctuation
interval of species used by all RSSA variants is±10% of current
state.

The Linear chain model is simulated by increasing the values
of N (100, 500, 1000, 5000, 10000 and50000) to observe the
scaling characteristic of the algorithms. The simulation of all algo-
rithms is run100 times for each value ofN to average the results
which are collected after107 simulation steps. The performances
of SSA-CR, PSSA-CR, RSSA-Binary, RSSA-Lookup and RSSA-
CR are depicted in Fig. 3.

We have conclusions from Fig. 3. First, RSSA-Lookup has the
best search for all values ofN ; however, the high update cost
negates its total simulation time. The result is the performance of
RSSA-lookup is the worst whenN is large. Second, the search
cost of RSSA-Binary for largeN is the worst in comparison with
all other algorithms because it increases logarithmic withN . The
search cost of RSSA-CR is better than RSSA-Binary because it
is independent ofN . For example, the search cost of RSSA-CR
for N = 50000 is 5 times faster than RSSA-Binary. Third, the
search of both SSA-CR is slightly faster than both PSSA-CR and

Fig. 3. Performance of SSA-CR, PSSA-CR, RSSA-Binary, RSSA-
Lookup and RSSA-CR on the Linear chain model by increasing values
of N (100, 500, 1000, 5000, 10000, 50000). The top-left figure shows the
time spent for the search of next reaction firings. The top-right figure
shows the propensity update time. The bottom figure shows the total
simulation time which is the sum of search time, propensity update time
and all other tasks (e.g., recording state and writing result to file).

RSSA-CR. This is because SSA-CR uses only one rejection-test
for selecting the next reaction, while both PSSA-CR and RSSA-
CR employs two rejection tests. Finally, the update of RSSA-CR
has the best performance in comparison with SSA-CR and PSSA-
CR. The number of propensity updates of RSSA-CR is reduced to
around2.4 × 104 and the acceptance probability of a candidate
reaction is kept around65%. The number of propensity updates
for both SSA-CR and PSSA-CR is107 because they have to
update propensities of reactions after each reaction firing. The
result is RSSA-CR is around30% and10% faster than SSA-CR
and PSSA-CR, respectively.

4.3 Colloidal aggregation network

In the final example, the colloidal aggregation is used to demon-
strate the significant improvements of RSSA-CR in comparison
with PSSA-CR and SSA-CR where both the search for reaction
firings and the propensity updates contribute are simulation bot-
tlenecks of these simulation approaches.

The colloidal aggregation is a process that forms big clus-
ters from colloidal particles, e.g., proteins, nanobeads.It is a
ubiquitous phenomenon occurring in nature and widely explored
in manufacturing [46], [47]. The aggregation of particle is an
irreversible process. In the forward process, the particleaggre-
gates on and grow in size. The reverse process disrupts particle
aggregates into individual particles. The colloidal aggregation is
thus a metastable system where a variety of different aggregation
states are achievable.

The model containsN colloidal particles which can interact
with other species to form big clusters. The reaction networkthat
models the colloidal aggregation process is defined by:

Sn + Sm

cn,m

→ Sn+m, n = 1 . . . [N/2],m = n . . . N −m

Sp

cp,q
→ Sq + Spq, p = 1 . . . N, q = 1 . . . [p/2] (10)
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Fig. 4. Performance of SSA-CR, PSSA-CR and RSSA-CR on the Col-
loidal aggregation model by increasing values of N (10, 50, 100, 500).
The top-left figure shows the time spent for the search of next reaction
firings. The top-right figure shows the propensity update time. The
bottom figure shows the total simulation time which is the sum of search
time, propensity update time and all other tasks (e.g., recording state
and writing result to file).

wherecn,m andcp,q are rate constant of forward and reverse pro-
cesses, respectively. The number of reactionsM in the colloidal
aggregation network is increasing in quadratically in the number
of particles. Specifically, the number of reactions isM = [N2/2].
The average number of affected reactions which needs to update
their propensities is linear with the number of particlesN . The
initial population of all species in this experiment is set to
#Si = 1000 for i = 1 . . . N . The kinetics rate of all reaction
is set tocn,m = cp,q = 1. The fluctuation interval of species used
by RSSA-CR is±10% of current state.

We simulate the Colloidal aggregation model with different
values of N (10, 50, 100 and 500) to observe the scaling
characteristic of the simulation algorithms: SSA-CR, PSSA-CR
and RSSA-CR. The algorithms are run100 times for each value of
N to average the results which are collected after107 simulation
steps. Figure 4 shows the performances of SSA-CR, PSSA-CR
and RSSA-CR.

The search of SSA-CR achieves the best performance for all
values ofN ; however; its update cost is many times slower than
PSSA-CR and RSSA-CR. For example, in caseN = 100, the
propensity update time of SSA-CR is roughly20 and 4 times
slower than RSSA-CR and PSSA-CR, respectively. The result
is the performance of SSA-CR is the worst in simulating the
Colloidal aggregation model, especially for largeN . The search
of RSSA-CR is slightly slower than PSSA-CR. For example, in
caseN = 500, the search time of PSSA-CR is around20% faster
than RSSA-CR. Although the update cost of PSSA-CR is reduced
by updating propensities of reactions having common reactant
collectively in one operation. PSSA-CR still requires to perform
propensity updates after each reaction firing. Note that in this
model, the number of reactions needs updating their propensity
each reaction firing is linearly increasing withN . This number in
RSSA-CR is reduced to around9×105 (corresponding with9% in
comparison with107 times of PSSA-CR). The update cost RSSA-
CR is 4 times faster than PSSA-CR. Thus, the total simulation

time of RSSA-CR is3.8 times faster than PSSA-CR.

5 CONCLUSIONS

We presented a new algorithm, called RSSA-CR, which combines
composition-rejection search and propensity bounds for improving
the search for next reaction firings and reducing the number of
propensity updates in simulating large reaction networks.The
time complexity of the search of RSSA-CR is independent of
the number of reactions, but is only depending on the number
of groups. By using the propensity bounds for selecting reaction
firings, RSSA-CR does not need to recompute these values in
most of its simulation steps. The propensity updates in RSSA-CR
are performed infrequently and only when necessary. In addition,
the recomputing of propensity bounds are performed locallyfor
the affected reactions only. These features of RSSA-CR makes it
suitable for the simulation of large reaction networks. Formodels
where the reactions are split among groups so that the search
for the candidate group has an average constant bound and the
dependencies between species and reactions are bounded, RSSA-
CR has constant time complexity. The benchmark confirmed that
RSSA-CR is efficient for simulating large and complex models.
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