In a region where ground-based gauge data are scarce, satellite rainfall estimates (SREs) are a viable option for proper space–time rainfall characterization. However, their accuracy and performances vary from region to region, and must be assessed. In this study, five high resolution satellite products (3B42V7, CMORPH, TAMSAT, SM2R-CCI, and CFSR) are compared and analyzed using the available rain gauge data in one of the most topographically and climatologically complex basin of Africa, the Upper Blue Nile basin (UBN). The basin rainfall is investigated systematically, and it is found that, at some locations, the difference in mean annual rainfall estimates between these SREs could be as much as about 2700 mm. Considering three goodness-of-fit indexes, correlation, bias and root mean square error (RMSE) between the SREs and ground-based gauge rainfall, CMORPH, TAMSAT and SM2R-CCI outperform the other two. Furthermore, a confusion matrix is used to investigate the detection ability of satellite rainfall products for different rainfall intensities. TAMSAT has the highest (91%) detection skill for dry days, followed by CFSR (77%). On the contrary, SM2R-CCI has the highest accuracy index for medium rainfall ranges (10–20 mm). The empirical cumulative distribution (ecdf) mapping technique is used to correct the intensities distribution givenby the SREs. This method provides a means to improve the rainfall estimation of all SREs, and the highest improvement is obtained for CMORPH (bias reduction from − 72% to − 1%).

Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin / Abera, W. W.; Brocca, L; Rigon, Riccardo. - In: ATMOSPHERIC RESEARCH. - ISSN 0169-8095. - 1986:178-179(2016), pp. 471-483. [10.1016/j.atmosres.2016.04.017]

Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin

Rigon, Riccardo
2016-01-01

Abstract

In a region where ground-based gauge data are scarce, satellite rainfall estimates (SREs) are a viable option for proper space–time rainfall characterization. However, their accuracy and performances vary from region to region, and must be assessed. In this study, five high resolution satellite products (3B42V7, CMORPH, TAMSAT, SM2R-CCI, and CFSR) are compared and analyzed using the available rain gauge data in one of the most topographically and climatologically complex basin of Africa, the Upper Blue Nile basin (UBN). The basin rainfall is investigated systematically, and it is found that, at some locations, the difference in mean annual rainfall estimates between these SREs could be as much as about 2700 mm. Considering three goodness-of-fit indexes, correlation, bias and root mean square error (RMSE) between the SREs and ground-based gauge rainfall, CMORPH, TAMSAT and SM2R-CCI outperform the other two. Furthermore, a confusion matrix is used to investigate the detection ability of satellite rainfall products for different rainfall intensities. TAMSAT has the highest (91%) detection skill for dry days, followed by CFSR (77%). On the contrary, SM2R-CCI has the highest accuracy index for medium rainfall ranges (10–20 mm). The empirical cumulative distribution (ecdf) mapping technique is used to correct the intensities distribution givenby the SREs. This method provides a means to improve the rainfall estimation of all SREs, and the highest improvement is obtained for CMORPH (bias reduction from − 72% to − 1%).
2016
178-179
Abera, W. W.; Brocca, L; Rigon, Riccardo
Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin / Abera, W. W.; Brocca, L; Rigon, Riccardo. - In: ATMOSPHERIC RESEARCH. - ISSN 0169-8095. - 1986:178-179(2016), pp. 471-483. [10.1016/j.atmosres.2016.04.017]
File in questo prodotto:
File Dimensione Formato  
comparison-evaluation-sres_08012016.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 6.77 MB
Formato Adobe PDF
6.77 MB Adobe PDF Visualizza/Apri
1-s2.0-S0169809516301065-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/150117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 60
  • OpenAlex ND
social impact