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Abstract

In a region where ground-based gauge data are scarce, satellite rainfall estimates (SREs) are a viable option for proper space-
time rainfall characterization. However, their accuracy and performances vary from region to region, and must be assessed. In this
study, five high resolution satellite products (3B42V7, CMORPH, TAMSAT, SM2R-CCI, and CFSR) are compared and analysed
using the available rain gauge data in one of the most topographically and climatologically complex regions, the Upper Blue Nile
basin. The basin rainfall is investigated systematically, and it is found that, at some locations, the difference in mean annual rainfall
estimates between these SREs could be as much as about 2700 mm. Considering three goodness-of-fit indexes, correlation, bias
and root mean square error (RMSE) between the SREs and ground-based gauge rainfall, CMORPH, TAMSAT and SM2R-CCI
outperform the other two. Furthermore, a confusion matrix is used to investigate the detection ability of satellite rainfall products
for different rainfall intensities. TAMSAT has the highest (91%) detection skill for dry days, followed by CFSR (77%). On the
contrary, SM2R-CCI has the highest accuracy index for medium rainfall ranges (10-20 mm). The empirical cumulative distribution
(ecd f ) mapping technique is used to correct the SREs intensities distribution. This method provides a means to improve the rainfall
estimation of all SREs, and the highest improvement is obtained for CMORPH (bias reduction from -72% to -1%).
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1. Introduction

Rainfall is the primary component of the water balance and
is, therefore, the key input for hydrological modelling and wa-
ter resources analysis. Before any analysis for water resource
modelling and/or management can be carried out, it is essen-
tial to answer how much water is flowing to the basin (Shaw
et al., 2010). Traditionally, rainfall estimation for hydrolog-
ical modelling and water resource analysis is available from
ground-based rain gauges. However, there are many regions in
the world where ground-based gauge data are scarce, if avail-
able at all, and estimation of spatial rainfall field from ground-
based gauge data is questionable. Recently, satellite rainfall es-
timates (SREs) provide viable alternative options (Ward et al.,
2011; Tian et al., 2007; del Jesus et al., 2015; Gebremichael
and Hossain, 2010). The key advantage of SREs is that they
provide spatially and temporally continuous data that can be
used to capture the variability of rainfall. However, the re-
trieval of rain rate from satellite data is not straightforward and,
hence, over the past decades, numerous satellite rainfall esti-
mation algorithms, applied to different satellite sensors, have
been developed. For instance, we can mention the Tropical
Rainfall Measuring Mission (TRMM) Multisatellite Precipita-
tion Analysis (TMPA, (Huffman et al., 2007; Kummerow et al.,
1998)), the Climate Prediction Center (CPC) morphing tech-
nique (CMORPH, Joyce et al. (2004)), the Precipitation Es-
timation from Remotely Sensed Information Using Artificial
Neural Networks (PERSIANN, Sorooshian et al. (2000)) and

recently products based on the novel SM2RAIN algorithm (Brocca
et al., 2014). All these products vary in terms of resolution (spa-
tial and temporal) and accuracy, hence, their performances and
drawbacks for operational application in water resources mod-
elling must be assessed.

The Blue Nile basin, particularly the Upper Blue Nile basin
(hereinafter UBN), is one of the most physically, socially and
politically complex basins in Africa, but poorly covered by rain
gauges. The Basin is the part of trans-boundary river basin,
where different countries have different policies and legal regimes,
sometimes with contrasting interest. This represents a chal-
lenge on the basin water resource development. Due to the lack
of in situ data, most hydrological studies in the region are lim-
ited to small basins where there are relatively better hydromete-
orological data (Rientjes et al., 2011; Uhlenbrook et al., 2010;
Tekleab et al., 2011; Wale et al., 2009; Kebede et al., 2006; Be-
wket and Sterk, 2005; Steenhuis et al., 2009; Conway, 1997;
Mishra et al., 2004; Mishra and Hata, 2006). These studies
usually pay little attention to a proper spatio-temporal rainfall
characterisation (Kim et al., 2008).

Several validation studies of SREs have been conducted in
the Ethiopian UBN basin (Dinku et al., 2007, 2008; Haile et al.,
2013; Gebremichael et al., 2014; Worqlul et al., 2014; Romilly
and Gebremichael, 2011; Hirpa et al., 2010; Habib et al., 2012).
For instance, the two comparative studies by Dinku et al. (2007,
2008) on high temporal (less than and equal to 10 days) and
spatial (less than or equal to 10) resolution products show that
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Figure 1: The geographic location of Upper Blue Nile basin in the Nile basin (a) and digitale elevation model of the basin (b). The points in figure b are the
meteorological stations used for this study.

CMORPH, TAMSAT (Grimes et al., 1999) and TRMM 3B42
(the gauge-corrected version of TMPA products, Huffman et al.
(2007)) are three SREs with such a good accuracy to be poten-
tially useful for hydrological applications in the region. Dinku
et al. (2008) reported that CMORPH works better in Ethiopia
than other regions of Africa, while Haile et al. (2013), study-
ing the accuracy of CMORPH over a subbasin of UBN basin
for three months, found poor accuracy with respect to other
regions. More recently, Gebremichael et al. (2014), by de-
signing experimental rain gauges for two summer seasons in
two experimental locations (one in the lowlands and one in the
highlands) of the UBN basin, examined the accuracy of three
high-resolution satellite rainfall products (CMORPH, TRMM
3B42RT - the real-time version of TMPA - and TRMM 3B42).
Regarding the relationships between SREs goodness-of-fit val-
ues and topography (particularly elevation) of the experimental
sites, SREs overestimate the mean rainfall rate in the lowlands
and, vice versa, underestimate at the highland site. On 3-hourly
time scales, the SREs miss more rainfall at the highland sites
than at the lowland sites. Worqlul et al. (2014) extended these
studies by comparing TRMM-3B42 with two other products
(Multi-Sensor Precipitation EstimateGeostationary (MPEG) and
the Climate Forecast System Reanalysis (CFSR)) in the Lake
Tana subbasin in 2010 and found that MPEG and CFSR are
far better than TRMM-3B42. CFSR is one of the highest res-
olution (time and space), multiyear, global gridded reanalysis
rainfall dataset, and is used as input to the rainfall-runoff mod-
elling in Gumera basin (subbasin of the UBN) and provides
similar performances to the ground-guage data model inputs
(Fuka et al., 2014). This study compliments the above men-
tioned researches (Dinku et al., 2007, 2008; Haile et al., 2013;

Gebremichael et al., 2014; Worqlul et al., 2014), which have
been conducted either for some subbasin or only for short time
series in some designated experimental sites.

The objectives of this paper are twofold: 1. to compara-
tively evaluate five daily SREs, i.e. four commonly used prod-
ucts (TRMM 3B42, CMORPH, TAMSAT, and CFSR) and the
new SM2R-CCI (see Data sets section) product; and 2. to assess
the potential of improving the SREs by using a bias correction
method. In the view of evaluating the SREs for hydrological
modelling, the study aims to unify all the above results by ana-
lyzing relatively high resolution (daily) SREs against available
daily gauged rainfall data for a 10 year period (2003-2012). It
is known that some products such as CMORPH and IMERG
are available at higher resolution (at sub daily time steps i.e. 30
min and 3 hour). However, in this study, we have focused at
daily time steps due to two reasons. Firstly, at large basin scale
as UBN, the hydrological simulation at daily time step can be
considered high resolution. Secondly, there are no in-situ mea-
sured data to evaluate the SREs estimation skills at sub daily
time steps.

The paper is organized as follows: section 2 provides a ba-
sic introduction to the study basin, followed by data descrip-
tions (section 3) of both SREs (subsection 3.1) and ground-
based data (subsection 3.2). Section 4 elaborates the methods
used for comparison and for bias correction of SRE. The com-
parison of SREs in relation to the ground-baed data and the
bias correction results, and the conclusions of the study are pre-
sented in section 5 and 6 respectively.
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2. Study area

The study basin is the Upper Blue Nile (UBN) basin. The
UBN basin contributes to 60% Of the total contribution (85%)
of the Ethiopian highlands to the Nile river flows (Abu-Zeid
and Biswas, 1996; Conway, 2000). The total area of UBN en-
closed at the Ethio-Sudan border is about 175,315 km2 (fig-
ure 1). The UBN originates at Lake Tana, and flows to Su-
dan, where it meets the White Nile River at Khartoum. The
large scale hydrological behavior of the basin is described in
a series of studies (Conway, 1997, 2000, 2005; Conway and
Hulme, 1993). Its hydrological behavior is characterized by
high spatio-temporal variability. Since UBN basin has the lion’s
share of the total Nile flow, it is the economic mainstay of
downstream countries (Sudan and Egypt). Moreover, the Ethiopian
highlands are highly populated and have high water demands
for irrigation and domestic uses.

The topographic distribution of the basin is shown in fig-
ure 1 b. The topography of UBN is very complex, with eleva-
tion ranging from 500 m in the lowlands at the Sudan border
to 4160 m in the upper parts of the basin. Due to the topo-
graphic variations, the climate of the basin varies from cool
(in the highlands) to hot (in the lowlands), with large varia-
tions in a limited elevation range. The wet season, with low
temperatures, is from June to September, while the hot sea-
son is from March to May. Three controlling mechanisms of
the rainfall characteristics of the UBN, and Ethiopia in general
(Seleshi and Zanke, 2004), are the Intertropical Convergence
Zone (ITCZ) that mainly derive the wet monsoon rainfall in the
wet season (June to September), the Saharan anticyclone that
generates the dry and cool northeasterly winds in the dry sea-
son (from October-February), and the Arabian highlands that
produce thermal lows in the mild season (February - May).
The mean annual rainfall and potential evapotranspiration of
the UBN basin are estimated to be in the ranges of 1200-1600
mm and 1000-1800 mm respectively (Conway, 1997, 2000),
with high spatio-temporal variability. The annual temperature
mean is 18.5o with small seasonal variability.

3. Data sets

3.1. Satellite Rainfall Estimate (SRE) products

In this section, we describe five high resolution SRE prod-
ucts, TRMM 3B42, CMORPH, TAMSAT, CFSR, and SM2R-
CCI, that will be used for rainfall estimates in the following
sections. All the products are available at spatial resolution of
0.25o (except TAMSAT which is 0.035o) and temporal resolu-
tion of subdaily to daily. To obtain the rainfall estimation, one
of the product (i.e. SM2R-CCI) has a different procedure than
the rainfall retrieval algorithm from PMW/IR observations,. Nev-
ertheless, here, we are referring SRE (satellite rainfall estimate)
for all the five products for simplicity. The detailed description
of each algorithm/product can be referred to in the literature
cited in table 1.

TRMM is the joint NASA and JAXA mission originally
aimed at studying tropical rainfall (Kummerow et al., 2000;

Rozante et al., 2010). TRMM 3B42 version 7 (hereinafter de-
fined as 3B42V7) (Huffman and Bolvin, 2013; Huffman et al.,
2007) is among the TMPA products with high spatial resolution
of (0.25o) and high temporal resolution (3-hour). The spatial
coverage extends from 50 degrees south to 50 degrees north lat-
itude. For this study, 3B42V7 is obtained from NASAs TRMM
Online Visualization and Analysis System (Liu et al., 2007,
2012) (http://disc.sci.gsfc.nasa.gov/precipitation/
tovas/). The detailed information on processing and genera-
tion of the 3B42V7 can be found in the literature cited in ta-
ble 1. We underline here that the 3B42V7 product is corrected
with rain gauge observations (i.e., it is not based only on satel-
lite data). Indeed, the 3-hourly rainfall fields are corrected on a
monthly basis with the Global Precipitation Climatology Cen-
tre (GPCC) monthly rain gauge dataset by using inverse-error-
variance weighting methods (Huffman and Bolvin, 2013; Huff-
man et al., 2007).

The CMORPH product (Joyce et al., 2004) is a rainfall es-
timation method that mainly relies on PMW observation. It
uses precipitation estimates that have been derived from low or-
bit satellite PMW observations exclusively, and whose features
are transported via spatial propagation information that is ob-
tained from geostationary satellite IR data (Joyce et al., 2004).
CMORPH is a near global product (60o north and south) and
provides data at 3 hourly and daily resolution since 1998; and
at temporal resolution of 30-min since December 2002. The 3-
hourly precipitation at 0.25o spatial resolution data are used for
this study.

CFSR is one of the SREs assessed in this study. It is a re-
analysis product that combines the weather forecasts generated
by the National Weather Service’s NCEP Global Forecast Sys-
tem, and satellite data (Saha et al. (2010)). The analysis is reini-
tialized every 6-hours, and it is obtained at hours 00:00, 06:00,
12:00, 18:00 UTC. The spatial resolution of CFSR is about 38
km, and it is available since 1979.

Tropical Applications of Meteorology Using Satellite and
Ground-Based Observations (TAMSAT) (Grimes et al., 1999;
Tarnavsky et al., 2014), is a rainfall product specialized for
Africa. It has been providing 10-day rainfall estimates since
1983 and recently (since 2013) daily products are available.
The TAMSAT rainfall estimation algorithm is calibrated using
the historical rain gauges, TAMSAT African Rainfall Climatol-
ogy And Time-series. The methodology and algorithms of the
TAMSAT rainfall product derive from Meteosat imagery and
gauge data using contemporaneous cold cloud duration fields
(Tarnavsky et al., 2014; Maidment et al., 2014). The product
is available at a resolution of 0.0375o at nadir (∼4 km). Some
studies (Laurent et al., 1998; Thorne et al., 2001; Chadwick
et al., 2010; Maidment et al., 2013; Jobard et al., 2011) find
that TAMSAT estimates (over ten days) are comparable to the
other SREs, even better in some cases, when compared with
gauge data. Dinku et al. (2007) showed that TAMSAT (over
ten days) rainfall estimates perform as well as CMORPH and
TRMM (version 6) in Ethiopias central highlands. However,
the new TAMSAT daily rainfall estimates performances have
not yet been assessed.

The SM2R-CCI rainfall product is based on the SM2RAIN
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Table 1: Summary of the different satellite products used in this study. Because CMORPH is available since December 2002, the study is based on only 10 years of
data. However, the statistical indexes analyzed for all the years with available data is almost the same and the difference is not statistically significant.

SREs Spatial res.o Temporal res. Available Data used References
3B42V7 0.25 3-hourly 1998-present 2003-2012 Zhao and Weng (2002); Huffman et al. (2007);

Prakash et al. (2015); Kumar et al. (2014);
Duan and Bastiaanssen (2013); Romilly and Ge-
bremichael (2010)

CMORPH 0.25 3-hourly 1998-present 2003-2012 Ferraro (1997); Joyce et al. (2004); Haile et al.
(2015); Romilly and Gebremichael (2010); Gao
and Liu (2013)

TAMSAT 0.0375 daily 1983-present 2003-2012 Grimes et al. (1999); Maidment et al. (2014); Tar-
navsky et al. (2014)

CFSR 0.3125 6-hourly 1979-present 2003-2012 Saha et al. (2010, 2006); Wang et al. (2011); Xue
et al. (2011); Saha et al. (2014)

SM2R-CCI 0.25 daily 1990-present 2003-2012 Brocca et al. (2013, 2014); Ciabatta et al. (2015)

method (Brocca et al., 2013) and is obtained from the CCI soil
moisture product (Dorigo et al., 2015) for the period 1990-
2013 at 0.25 spatial resolution. The SM2RAIN algorithm is
based on the inversion of the water balance equation by con-
sidering the soil as a natural rain gauge (Brocca et al. (2014)).
The SM2RAIN-derived product provides an integrated estimate
of rainfall (daily in this case). In this study, SM2RAIN is ap-
plied for the first time to the CCI soil moisture product, allow-
ing to obtain a long-term (24-year) daily rainfall product, by
using the same approach given in Ciabatta et al. (2015). Specif-
ically, the SM2RAIN parameter values are calibrated by using
the 3B42V7 product as benchmark in the period 1999-2005. In
the evaluation period, there is a three years (2003-2005) of over-
lap with the calibration period (1999-2005) between 3B42V7
and SM2R-CCI. This could (slightly) affect the independency
between the two products. However, the use of data sets of
different length for SRE evaluation statistics (see section 4.1),
which also have longer period of independent data, helps to
understand if that this dependency does not affects the results
considerably. We note that this calibration is performed here
for the UBN study area but, potentially, it can be easily applied
on a global scale.

3.2. Rain Gauge rainfall data sets

Rain gauges across the UBN basin are very scarce. In this
study, 35 daily rain gauges are used. The in situ data is obtained
from the national meteorological agency of Ethiopia. The spa-
tial location and elevation of the stations used for this study are
shown in figure 1b. The data are manually checked for qual-
ity and the final refined data are used in the following analysis.
Looking at the distribution of the stations, the upper part of the
basin has relatively higher station density than the lowland and
the middle of the basin (figure 1b).

4. Methodology

The daily rainfall data estimates from 3B42V7, CMORPH,
TAMSAT, CFSR, and SM2R-CCI at grid level are compared

with daily rainfall data from raingauges. Since the density of
the rain gauges is very low and the topography of the study
area is complex, we decided not to interpolate the rainfall data
over the spatial fields but to compare directly point rainfall at
the stations, with the the grid rainfall as in (Porcù et al., 2014;
Worqlul et al., 2014).

4.1. Performance metrics
To make the comparison we used the products at daily time

steps. Therefore, all the SRE products at sub daily time steps
are accumulated into daily totals. Since we are interested in as-
sessing the entire performances of the SREs in the basin, the
statistics are calculated for the whole data set (including ze-
roes). We used the Pearson linear correlation coefficient (r),
the Root Mean Square Error (RMSE), and the BIAS goodness-
of-fit (GOF) indexes, as defined in Appendix B. An important
question concerning SREs is their error sensitivity and variabil-
ity to the length of data used for evaluation. In order to assess
the effects of data series length on the performance statistics
(GOF statistics), we used different sets of data series length for
estimation of GOFs between SREs and gauge observed data.
We have evaluated the SREs error statistics progressively for 1,
4, 7 and 10 year period. The 1 year means the analysis is based
on only the first year of the data set (2003), 4 years from 2003
to 2006, 7 years from 2003 to 2009 and 10 years the whole pe-
riod. Accordingly, we calculate the GOF statistics for the four
data sets with different length.

To further investigate the errors and prediction capacity of
SREs, we decomposed the errors in classes as in (Salio et al.,
2015; Cohen Liechti et al., 2012; Haile et al., 2013). They use
two class of data, i.e., rain and no-rain distinction, and the prod-
ucts are evaluated using the accuracy index, given by:

Accuracy =
Na + Nd

Na + Nb + Nc + Nd
(1)

Where the terms of the equation are described by the confusion
matrix given in table 2.

In this study, we further analyze the detection skill of the
SREs by subdividing the SREs into several rainfall classes based
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Table 2: Confusion matrix based on the four possibilities of SRE detection of
the guage observed rainfall. The four possibilities are true positive (a), false
positive (b), false negative (c), and true negative(d).

SREs:Yes SREs:NO
Gauge: Yes a b
Gauge: NO c d

on observed rainfall amounts. Specifically, the SREs are di-
vided into 7 rainfall classes (all in mm/day): ≤ 0.1, 0.1-2; 2-5;
5-10; 10-20; 20-40; ≥ 40. The first class (class 0) characterizes
dry days. In literature, separation of dry days is obtained by
imposing a minimum detectable rainfall threshold. This thresh-
old value is controversial, as it ranges from 0.1 to 1 mm/day
(Jakob Themeßl et al., 2011; Moon et al., 1994; Lázaro et al.,
2001; Schmidli and Frei, 2005; Kisaka et al., 2015). In this
study, we use 0.1 mm as suggested by World Meteorological
Organization (Jarraud, 2008).

The confusion (or matching) matrix of different SRE amounts
versus rain gauge measured amounts is estimated for each rain-
fall class. As it can be seen in the results section, multi-class
confusion matrix tells the proportion of SREs in different classes,
shown on the y-axis, for a given observed rainfall classes, in
the x-axis. In the ideal situation, where the SREs are perfectly
consistent with the observed data, the matrix would be an anti-
diagonal matrix where all the entries are zero except on the di-
agonal going from the lower left corner to the upper right corner
with ones.

4.2. Bias correction

The comparative evaluation study and selection of the best
product may not always give an accurate enough product for
hydrological modelling. Therefore, further bias correction of
SREs could be important to obtain reasonable results (AghaK-
ouchak et al., 2012). In the second section of the analysis, sys-
tematic bias correction of SREs is performed. The empirical
cumulative distribution function (ecd f ) mapping bias correc-
tion technique, initially proposed by (Panofsky et al., 1958),
and recently applied for hydrological data correction by (The-
meßl et al., 2012; Michelangeli et al., 2009; Iizumi et al., 2011;
Maurer and Pierce, 2014; Hwang and Graham, 2013), is used.
In this method, the ecd f of the SREs is first matched to the ecd f
of the gauges observed rainfall estimates, generating a correc-
tion function depending on the data percentile. The correction
function is derived for each percentile. If a new extreme value
is available in the new SREs, the correction function is linearly
extrapolated. Then, the correction function is applied to the
ecd f of the SREs (ecd f S ,cal

i ) and the ecd f of the ground-gauge
data at calibration points (ecd f G,cal−1

i ) to transfer the original
SREs (S val

t,i ) to the corrected SREs (S Corr,val
t,i ) at other validation

points, as given by (Michelangeli et al., 2009; Themeßl et al.,
2012)

S Corr,val
t,i = ecd f G,cal−1

i (ecd f S ,cal
i (S val

t,i )) (2)

where S Corr,val
t,i is the new corrected SRE for a given stations

,i and t time steps. The ecd f −1 is the inverse of the ecd f . S and
G are SRE and gauge rainfall estimate, respectively. The sub-
script t, i are are the time steps and station number, respectively.

As shown in different studies (Cai et al., 2015; Hossain and
Huffman, 2008; Ebert et al., 2007), biases and errors in SREs
exhibit space and time variability. To reduce the effect of spa-
tial variability in bias correction procedure, the 35 stations are
systematic divided into two groups: 17 stations for calibration
and 18 stations for validation as shown in (figure A.8). The
correction function (equation 2) is constructed based on all sta-
tions combined ecd f matching between the observed rainfall
and SREs at calibration stations. The function generated is used
to develop new corrected SREs that can be evaluated in the ap-
propriate meteorological stations. While this approach may not
provide the highest performance at a particular station, it is use-
ful to obtain a good performance on average, at the basin. Sim-
ilarly, to reduce the effect of temporal SREs errors, the bias cor-
rection procedures is applied for each season independently (as
in Bennett et al., 2014). For the sake of simplicity, as the basin
receives 75% of the rain in summer (Mellander et al., 2013),
we apply the procedure only in the summer season (June, July,
and August).

For validation of time series bias correction procedure, the
data set (10 years of data for all stations) is split in to two; the
first 5 years (2003-2007) to develop the transfer function, and
the next 5 years (2008-2012) for subsequent evaluation of the
bias correction procedures using the same approach of spatial
cross validation. The procedures of transfer function generation
and validation are applied for all stations combined.

5. Results and Discussions

The study results are presented in two subsections. The
first part comparatively evaluates the five daily SREs against
the gauge observed rainfall data. The second subsection fo-
cuses on the results of SREs bias correction using ecd f match-
ing method.

5.1. Comparative evaluation of SREs

The five SREs are analyzed based on GOF statistics (r, RMSE
and BIAS) and on their detection capability (confusion matrix
and accuracy index). In figure 2, we summarized the GOF
statistics between the SREs and gauge observations by splitting
the 10 years of data into subsets of 1, 4, 7 and 10 years.

Figure 2 illustrates that GOF statistics generally show sta-
bility with increasing length of data series used for the evalua-
tion of SREs. For instance, for 3B42V7, the median value of r
slightly decreases (from 0.5 to 0.47) with increasing the length
of data period from 1 to 10 years. Similar patterns are observed
for all the other SREs, except SM2R-CCI which shows an over-
all improvement when the whole period is considered. The lat-
ter result is expect due to the higher accuracy and temporal res-
olution of the CCI soil moisture product (Dorigo et al., 2015) on
which the SM2R-CCI product is built on. The correlation co-
efficient comparison between the SREs shows that CMORPH,
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Figure 2: Comparison of SREs with the ground-based rainfall estimation using (above) correlation (-), (middle) Root mean square error (mm/day) and (below)
BIAS (-). In the boxplot, the horizontal line in the middle shows the median, the bottom and top end of the box shows the 25th and 75th percentile, respectively, the
whiskers (vertical line) shows the range of the data, of the GOF values. For CFSR and TAMSAT, some stations (with high annual gauge observed rainfall) shows
outliers GOF values (dot in in the figure).

TAMSAT and SM2R-CCI perform better than the other two
SREs. The same figure demonstrates that the correlation of
CFSR is low and characterized by high variability as shown by
the long boxplot. The median r value of 3B42V7 (0.47) is gen-
erally higher than the values reported by Worqlul et al. (2014),
which however has a maximum value of 0.29 (monthly scale
analysis).

The data analysis for 1, 4, 7, and 10 year data sets illustrates
that also the effect of length of the data set on RMSE values is
rather limited (figure 2, second row). For most SREs, RMSE
median values for 1 year validation is smaller (likely due to the
selection of 2003 that is a dry year), and it increases to 4 year,
and then it keeps stable for 7 and 10 years. The comparison be-
tween the SREs for the 10 years evaluation results is consistent
with the correlation results, i.e., the RMSE value of TAMSAT
(6.85 mm/day), SM2R-CCI (6.88 mm/day), and CMORPH (7.3
mm/day) shows better performances in comparison to the other
SREs.

The daily RMSE values of CFSR and 3B42V7 by Worqlul
et al. (2014) at a specific subbasin (Lake Tana watershed) is 6.2
and 4.0 mm/day, respectively. These values are smaller than
our results (CFSR=8.9 mm/day, 3B42V7 = 7.52 mm/day). The
difference (as discussed below) could be due to the stations in
the lowland area of the basin (the western part) which shows
higher RMSE values than the eastern and north-eastern high-
lands where Lake Tana basin is located. Hence, it can be in-
terpreted that RMSE of CFSR is smaller than the 3B42V7 in

the highlands (to be specific Lake Tana basin), while the re-
sults in this study shows that at the whole UBN basin, 3B42V7
shows better performance (RMSE = 7.52 mm/day) than CFSR
(RMSE=8.91 mm/day). The study of Young et al. (2014), in the
Oromia region of Ethiopia, find similar results: TAMSAT and
CMORPH have lower RMSE values in comparison to 3B42V7
at daily time steps. Based on the r and RMSE statistics, CMORPH
outperforms 3B42V7, which is consistent with the results of
Bitew et al. (2012) for the small subbasin of UBN basin, the
Koga watershed, but for a single year.

In general, the effect of data length on BIAS is very small,
and it is valid for all the SREs (figure 2, third row). For instance,
the BIAS for 3B42V7 decreases from 4% for 1 year evaluation
to -4% in 10 years, the same level of BIAS but opposite sign.
A similar slight decline in BIAS is shown for CMORPH (frm
-66% to -72%) when the number of years in the analysis in-
creases. The comparison of the five products using BIAS is
not consistent with the products comparison using r and RMSE
(figure 2, the third row). For instance, SM2R-CCI (0.001) has
the lowest BIAS, followed by 3B42V7 (-0.042) and CFSR (-
0.06). The low BIAS of SM2R-CCI has to be attributed to the
use of 3B42V7 for the calibration of the parameter values of
the SM2RAIN algorithm. Note that while CMORPH is bet-
ter in estimating ground-gauge rainfall using the two previous
statistics (i.e., r and RMSE), it is underestimating by 72%, thus
being the most biased product of the five SREs. This could be
because CMORPH is only based on satellite products, and not
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corrected using ground data as 3B42V7. TAMSAT, on average,
is underestimating rainfall by 30%.

The spatial distribution of the the three GOF values (r, RMSE,
BIAS) are presented in figure 3. Overall the distribution of the
statistics can depict a spatial pattern, i.e., the correlations in the
eastern and northeastern part of the basin are higher than west-
ern and southwestern part. Similar pattern can be inferred from
the RMSE and BIAS statistics are both smaller in the eastern
part (the highlands), and they are higher in the western low-
lands of the basin. The BIAS statistic shows a less pronounced
pattern in comparison to r and RMSE. While CMORPH shows
high underestimation at all stations, 3B42V7, CFSR, and SM2R-
CCI shows the same described pattern. Generally, CFSR has
less spatial pattern in the statistics, and has relatively high spa-
tially mixed results (figure 3).As elevation increases from the
west towards the east and northeast part of the basin, the pattern
can be partly explained by elevation. The general pattern is that
SRE performance increases with elevation (data not shown).
Gebremichael et al. (2014) did a comparison study between the
highland and lowland sites, when using RMSE and BIAS, they
found the similar result. I.e., the highland sites show better per-
formances than the lowland sites.

Following the results of GOF analysis, the comparison of
SREs using the confusion matrix and the accuracy index is car-
ried out. The confusion matrix in figure 4 summarizes the rela-
tive bias of SREs for a given observed rainfall class. To analyses
the performances of each rainfall class, the SREs values were
grouped based on the observed rainfall classes in the x-axis.
For instance, the first column shows the distribution of SREs
when the gauge recorded rainfall values ≤ 0.1: it describes the
distribution of SRE records for this specific observed rainfall
class.

3B42V7 (figure 4a) has the higher detection capacity for
the first class (≤ 0.1 mm/day, 68%), with lower performances
for the other rainfall classes (≤ 26%). Except for the first and
second rainfall classes (≤ 0.1, 0.1-2mm), which have high de-
tection capacity (73% and 52%, respectively), the higher rain-
fall classes (≥ 10mm) show very low detection by CMORPH
(below 5%). It is important to note that apparently CMORPH
does not detect observed rainfall ≥ 20 mm at all. In general,
compared to 3B42V7, CMORPH has a systematic underestima-
tion for all the rainfall ranges (figure 4b). The confusion matrix
analysis results of CFSR (figure 4c) show that the pattern in the
detection capacity is similar to CMORPH for the first class and
to 3B42V7 for the other classes.

Two important results of the SM2R-CCI confusion matrix
(figure 4d) are its relatively higher detection capacities for medium
rainfall values (from 5mm to 20mm) and relatively lower detec-
tion for lower rainfall intensities (38%), likely due to noise in
soil moisture observations (see e.g., Ciabatta et al. (2015)). It is
only SM2R-CCI that has detection capacity of 25% and above
for rainfall ranges between 5 to 20 mm. In general, SM2R-CCI,
being based on soil moisture, tends to aggregate the rainfall vol-
ume thus being more accurate in the estimation of accumulated
rainfall than 3B42V7 and CMORPH that relies on the estima-
tion of instantaneour rainfall rates. This result is also important
as it highlights the large potential that could be gained by the

integration of these two kinds of SREs (e.g., SM2R-CCI and
CMORPH or 3B42V7 or TAMSAT).

Among the five SREs, TAMSAT has the highest detection
capacity for lowest rainfall intensities (91%). For all classes,
TAMSAT has the highest missing rate and the highest recorded
is for the 0.1-2 mm observed rainfall class (54%), while the
systematic bias for all the classes is relatively low (figure 4e).
The SREs detection capacity is further evaluated by the overall
accuracy capacity, and the comparison is shown in figure 4f.
The result confirms the confusion matrix analysis.

The time series rainfall summary analysis is useful for com-
parative evaluation, but does not provide insight into the ag-
gregate effects of using different SREs on water resource mod-
elling. Figure 5 shows the comparison of long term (2003-2012,
10 years), mean cumulative rainfall for different SREs and mea-
sured data. A sample of three stations systematically selected
to represent different ranges of elevation and spatial location is
used in the analysis. These are Mehal Meda, Debre Markos,
and Assosa which are located at high (3084 meters), medium
(2446 meters) and low (1600 meters) elevations, respectively.
The spatial location of the three stations is shown in the maps
plotted in figure 5. Four comments can be drawn:

1. Based on the three stations, the observed long term an-
nual rainfall shows that the effect of elevation is just par-
tially masked by the rainfall climatological regime dif-
ference (Mellander et al., 2013). Mehal Meda which is
at the highest elevation has a lower mean annual rainfall
than Debre Markos.

2. Although CFSR and CMORPH show consistent patterns
across elevations, CMORPH always underestimates, whereas
CFSR always overestimates rainfall. From this analysis,
CMORPH and CFSR have a significant BIAS.

3. The errors on cumulative annual rainfall given TAMSAT,
3B42V7 and SM2R-CCI across elevation are rather con-
trasting. For instance, 3B42V7 and SM2R-CCI slightly
overestimate rainfall in high and low elevation while un-
derestimate it in middle elevation. TAMSAT shows high
underestimation in the highland station, and progressively
overestimate in the lowland station.

4. The 10 year mean cumulative rainfall value of the five
SREs differ tremendously. The total mean annual rainfall
difference between the SREs is about 600 mm (in Mehal
Meda), 2740 mm (in Debre Markos), and 1600 mm (in
Assosa).

5.2. Bias correction using ecdf mapping
This subsection assesses and discusses the improvements

obtained by using the bias correction function generated at the
calibration stations (or calibration time series) and applied to
the SREs at validation stations (or validation time series). This
technique is evaluated i) by comparing the SRE ecdf and the
gauge rainfall ecdf, and (ii) by computing statistics (e.g., BIAS,
confusion matrix, and accuracy index) between ground data and
the SREs before and after the correction.

Figure 6 shows the variance of SREs (before correction)
ecd f distribution from the gauge rainfall ecd f distribution in
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Figure 3: The spatial distribution of GOF values for different SREs: correlation coefficient (first row), RMSE (second row) and Bias (third row).

the case of spatial cross-validation strategy. For all SREs except
TAMSAT, it is shown that there is dry-day frequency underes-
timation. In comparison to the gauge observed rainfall, most
SREs tend to overestimate very low (light) rainfall frequency
(drizzling-effect Wilcke et al. (2013)), as shown in ecd f distri-
bution at figure 6a. The observed drizzling traits for most SREs
could be due to its large spatial scale representation in compar-
ison to the point ground-gauge observation. To avoid this kind
of effects, the selection of a proper threshold for dry/wet days
plays an important role. In figure 6, the zoomed-out plot, gauge
observed dry day frequency is used to determine the dry/wet
threshold. However, in this approach, a problem arise when
SRE dry-day frequency is much greater than the gauge ob-
served rainfall (Themeßl et al., 2012; Wilcke et al., 2013), and
when dry-day frequency corresponds to high rainfall value for
determining SRE threshold. The dry-day frequency matching
approach , as shown in figure 6a, is used to define the thresh-
old for CFSR (at 1 mm), 3B42V7 (at 0.5 mm) and CMORPH
( at 0.3 mm) in the JJA period. However, for TAMSAT the
dry-day frequency is already to high, and threshold is kept to
the original 0.1 mm. Contrary to TAMSAT, SM2R-CCI dry-
day and low intensity rainfall is much smaller than the gauge
observation. For SM2R-CCI the dry-day frequency matching
pointed to high threshold (4.5 mm). Since this will cut an im-
portant rainfall information, and as the use of this threshold (4.5
mm) reduce the bias correction performances, we also used the
original 0.1 mm threshold for SM2R-CCI. Once the threshold
information for the SREs is estimated, below these thresholds,
the rainfall values are set to be zero, and above the threshold
the ecd f of SREs are mapped to the ecd f of the observed data
to construct the correction function. This correction function is

thus used to correct new SREs.
The overall evaluation of SREs improvement from the bias

correction application in both independent station (cross-validation)
and time series GOF index (mainly bias), confusion matrix,
and detection capacity (accuracy) are shown in table 3 and fig-
ure 7. The table 3 shows application of the ecd f bias correc-
tion in a spatial cross-validation and future time series valida-
tion improves SREs. The result illustrate that for spatial cross-
validation application, except CFSR, most SREs rainfall bias
strongly improved. For instance, the highest bias observed was
-70% for CMORPH, and the summer season bias correction
method improves it to only -4% (table 3), followed by SM2R-
CCI from -12% to 1%. The improvement in the detection ca-
pacity, however, is very small. This could be due to the use of
a single correction function for the summer season as a whole.
The construction of monthly correction functions could further
improve the results. The results for time series split are very
similar. The exceptional in the time series evaluation is 3B42V7
which does not show any improvement in bias.

The overall detection capacity improvement from the cor-
rection procedures is also presented in figure 7A and B. Gen-
erally, it improves the detection capacities and bias of the SRE
products. For instance, for spatial cross-validation, large pro-
portions of CFSR and SM2R-CCI estimates, 15 to 30% and
40 to 60% respectively, are concentrated in the 5-10mm rain-
fall range. The correction function improves this trend and
BIAS for all classes is distributed to all classes of SREs es-
timations. The derivation of dry/wet rainfall threshold using
the ecd f matching also improves the detection capacity for the
zero (dry) rainfall class, except for TAMSAT, which already
has the highest detection capacity for dry days (figure 7). This
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Figure 4: Confusion matrix that shows the proportion of observed rainfall classes in the x-axis reproduced by the different SREs (3B42V7 (a), CMORPH (b), CFSR
(c), and SM2R-CCI (d), TAMSAT (e)) in the y-axis. Each value in the confusion matrix is the proportion of the gauge observed rainfall class (along column) that is
estimated as a particular SREs class (along row). The comparison of SREs using accuracy index, for different rainfall classes, is shown in figure F. The statistics are
based on the daily rain gauge data size of ¡0.1 mm (N = 71010), 0.12 mm (N = 11059), 25 mm (N = 8500), 510 mm (N = 8602), 1020 mm (N = 8546), 2040 mm
(N=5141) and ¿40 mm (N = 1098).

9



A.Mehal Meda B.Debre Markos C.Assosa

0

1000

2000

3000

0 100 200 300 0 100 200 300 0 100 200 300

SREs

Gauge observations

CFSR

CMORPH

SM2R-CCI

TAMSAT

3B42V7

M
e
a
n
 C

u
m

u
la

ti
v
e
 r

a
in

fa
ll 

(m
m

)

Days of year

Mehal_Meda Debre_Markos Assosa

Figure 5: Annual mean cumulative rainfall estimations based on five SREs and gauges data.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Rainfall (mm/day)

E
C

D
F
[−

]

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Rainfall (mm/day)

E
C

D
F
[−

]

Gauge Observation

CFSR

CMORPH

SM2R-CCI

TAMSAT

3B42V7

0.00

0.25

0.50

0.75

0.0 2.5 5.0 7.5 10.0
Rainfall (mm/day)

EC
DF

[−
]

A. Summer ECDF before correction B. Summer ECDF after correction

Figure 6: Cumulative distribution functions for different SREs and observed
rainfall data before correction, used to construct the ecd f correction function
(a), and SREs and observed data after the correction function applied for the
validation data set (b). The zoomed-in plot in figure a is used to identify the dry
and wet days for the SREs.

is important because it gives an objective decision on reduc-
ing the small rainfall values by the SREs i.e drizzling effects of
the products. In the case of TAMSAT, the correction function
did not improve the detection capacity of the first class (class
0) because the products have no ”drizzling effect” and instead
overestimate dry days in comparison to the observed rainfall
data. In this case, since it has the highest detection capacity for
zero class (figure 4), the raw SREs are accepted for the first one
or two classes and the ecd f matching will be applied to high
values. The correction in 3B42V7 improves the dry days es-
timation, however, it increases the missing rate to higher rain-
fall values. The result of future time series validation shows
exactly the same pattern of improvement (figure 4B). The inde-
pendent station and future time series validation results suggest
that simple ecd f bias correction procedure can be used to obtain
better quality SREs at non-gauge sites and in future realization
of UBN basin.
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Table 3: The comparison of different SREs using summary statistics (Bias) and detection capacity (accuracy index) against the gauge observed data at validation
stations and time series during summer season (JJA) for about 10 years. The effect of bias correction on the other statistics (correlation coefficient and RMSE) is
very small, and results are not reported here.

spatial cross validation time series validation
Before correction After correction Before correction After correction

SREs BIAS (%) Accuracy BIAS Accuracy BIAS (%) Accuracy BIAS Accuracy
CFSR 13.60 0.51 -16.00 0.52 16.40 0.52 15.20 0.51
CMORPH -70 0.53 -4.0 0.56 -72.20 0.53 -1.10 0.55
SM2R-CCI -12.70 0.52 -1.40 0.54 -7.70 0.51 -2.60 0.54
TAMSAT -26.20 0.55 11.30 0.58 -23.80 0.55 11.30 0.57
3B42V7 -9.00 0.54 -1.60 0.55 -12.20 0.54 -12.80 0.55
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Figure 7: The effects of bias correction on the confusion matrix of different SREs (CFSR, CMORPH, SM2R-CCI, TAMSAT, and 3B42V7 from above to below)
during the summer season(June, July, August) applied in independent stations (A) and in future time series (B). The first column shows the detection capacities of
SREs before the bias correction and the second column is after bias correction.
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6. Conclusions

This paper comparatively evaluates five satellite rainfall datasets
over the Upper Blue Nile basin at daily time steps for 10 years,
and uses ecd f bias correction technique to improve SREs. Dif-
ferent goodness-of-fit statistics (r, RMSE, BIAS) and confusion
matrix are utilized to compare SREs and evaluate the bias cor-
rection strategy. The major findings are summarized as follows:

• The correlation coefficient based on 10 years of daily data
at the whole basin scale shows similar value for TAMSAT
(median=0.51), SM2R-CCI (0.5), and CMORPH (0.52),
slightly better than 3B42V7 (0.47) and CFSR (0.3) per-
formances.

• CFSR has the highest RMSE (8.9 mm/day) followed by
3B42V7 (7.5 mm/day) and CMORPH (7.3mm/day); TAM-
SAT (6.8 mm/day) and SM2R-CCI (6.8 mm/day) show
relatively lower RMSE values.

• CMORPH has the highest BIAS (-72%), with most of the
stations tends to have similar BIAS.

• The spatial distribution of GOF shows that the eastern
part of the basin (highlands) has higher performances (lower
RMSE and BIAS, and higher correlation) than the west-
ern part of the basin (lowlands).

• Generally, the detection skill decreases with increasing
rainfall classes. TAMSAT has the highest detection skill
for dry days while SM2R-CCI has better detection capac-
ity for medium rainfall intensities (10-20 mm/day).

• The mean annual cumulative rainfall analysis shows, at
some stations, that the difference amongst the various
SREs is as high as about 2700 mm. Such a huge dif-
ference in rainfall is the real concern in using SREs for
water balance modelling, and it shows that the choice of
SRE product is a topic of real interest.

• The two validation strategy of ecd f bias correction, grouped
cross validation and time series split validation, show that
there is room for improvement with relatively small ef-
forts. The highest and lowest bias improvement follow-
ing the ecd f correction procedures is shown for CMORPH
and CFSR, respectively.

In summary, different SREs exhibit different skills. The quan-
tification of different SREs performances and characterization
of errors is an important initial step for distributed hydrological
model set-up in the basin. As it is not possible to depict the
whole picture of SREs impact on the basin hydrological bud-
get, the implementation of SREs and bias correction procedure
in hydrological modeling framework in UBN basin is an impor-
tant issue we would like to address in the next step.

Replicable Research

The datasets used in this study, mainly the five SREs, R
codes, and supplementary material will be available for repro-
ducing the results of the paper at http://ecohydrogeomorpho-metry.
blogspot.it/2015/09/satellite-rainfall-estimation-products.

html.
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Appendix A. Stations split into calibration and validation

As shown in figure A.8, the total number of rainfall stations
is split in two: those used for ecd f matching and generating the
transfer function and those used to assess the performances of
the corrected SREs.
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Figure A.8: The spatial distribution of stations used to generate the correction
function (calibration stations) and used to evaluate the performances of the ecd f
mapping method (validation points).

Appendix B. Goodness-of-fit

The three goodness-of-fit indexes used in the paper are de-
fined as follows: the Pearson linear correlation coefficient (r):

r =
1
N

∑N
n=1(S i − S̄ )(Gi − Ḡ)√∑N

n=1(S i − S̄ )2∑N
n=1(Gi − Ĝ)2

, (B.1)

where S and G are the SREs and gauge rainfall estimation re-
spectively, N is the number of observations, and the overbar is
the mean operator. The Root Mean Square Error (RMS E):

RMS E =

√√√
1
N

N∑
i=1

(S i −Gi)2, (B.2)
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and BIAS :

BIAS =

∑N
i=1(S i −Gi)∑N

i=1 Gi
, (B.3)

r and BIAS are dimensionless, and RMSE is in mm. The opti-
mal values are 1, for r, 0 for RMS E, and 0 for BIAS.
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