As an application of a recent characterization of complete flag manifolds as Fano manifolds having only P1-bundles as elementary contractions, we consider here the case of a Fano manifold X of Picard number one supporting an unsplit family of rational curves whose subfamilies parametrizing curves through a fixed point are rational homogeneous, and we prove that X is homogeneous. In order to do this, we first study minimal sections on flag bundles over the projective line, and discuss how Grothendieck's theorem on principal bundles allows us to describe a flag bundle upon some special sections.

Flag bundles on Fano manifolds / Occhetta, Gianluca; Sola Conde, Eduardo Luis; Wiśniewski, Jarosław A.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 2016, volume 106:4(2016), pp. 651-669. [10.1016/j.matpur.2016.03.006]

Flag bundles on Fano manifolds

Occhetta, Gianluca;Sola Conde, Eduardo Luis;
2016-01-01

Abstract

As an application of a recent characterization of complete flag manifolds as Fano manifolds having only P1-bundles as elementary contractions, we consider here the case of a Fano manifold X of Picard number one supporting an unsplit family of rational curves whose subfamilies parametrizing curves through a fixed point are rational homogeneous, and we prove that X is homogeneous. In order to do this, we first study minimal sections on flag bundles over the projective line, and discuss how Grothendieck's theorem on principal bundles allows us to describe a flag bundle upon some special sections.
2016
4
Occhetta, Gianluca; Sola Conde, Eduardo Luis; Wiśniewski, Jarosław A.
Flag bundles on Fano manifolds / Occhetta, Gianluca; Sola Conde, Eduardo Luis; Wiśniewski, Jarosław A.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 2016, volume 106:4(2016), pp. 651-669. [10.1016/j.matpur.2016.03.006]
File in questo prodotto:
File Dimensione Formato  
OSW1.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 210.61 kB
Formato Adobe PDF
210.61 kB Adobe PDF Visualizza/Apri
1-s2.0-S002178241630006X-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 505.08 kB
Formato Adobe PDF
505.08 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/142979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact