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Abstract

As an application of a recent characterization of complete flag manifolds as Fano manifolds having only P1-bundles as
elementary contractions, we consider here the case of a Fano manifold X of Picard number one supporting an unsplit
family of rational curves whose subfamilies parametrizing curves through a fixed point are rational homogeneous,
and we prove that X is homogeneous. In order to do this, we first study minimal sections on flag bundles over the
projective line, and discuss how Grothendieck’s theorem on principal bundles allows us to describe a flag bundle upon
some special sections.

Résumé

Un résultat récent identifie les variétés de drapeaux complets comme les variétés de Fano n’ayant que des fibrations
en P1 comme contractions élémentaires. On va se servir de cette caractérisation pour étudier une variété de Fano
X de nombre de Picard un admettant une famille non scindée de courbes rationnelles dont les sous-familles qui
paramétrisent les courbes par un point choisi sont rationnellement homogènes. On montre qu’un tel X est homogène.
Dans ce but, on étudie d’abord les sections minimales de fibrés en drapeaux sur la droite projective et on discute
comment le théorème de Grothendieck sur des fibrés principaux permet de décrire un fibré en drapeaux à partir de
certaines sections spéciales.
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1. Introduction

Although vector bundles and their projectivizations play an important role in every branch of Algebraic Geometry,
a framework in which these objects are especially manageable is the one of algebraic varieties containing rational
curves. The main reason for this is the fact, attributed to C. Segre for rank two (see [20, p. 44] for historical remarks
on the general statement), that every vector bundle over the projective line P1 is isomorphic to a direct sum of line
bundles. However, it was not until Alexandre Grothendieck’s celebrated paper [6] that this theorem achieved an
optimal form, in the framework of principal bundles. In fact, Grothendieck shows (by reducing the general case, via
the adjoint representation of G, to the study of orthogonal bundles over P1) that every principal G-bundle –for G
reductive– is diagonalizable (see Theorem 3.3 below).

Our interest in this topic comes from its relation with certain homogeneity criteria that we have been recently
considering ([17, 19]) within a project whose goal is the Campana–Peternell conjecture, which predicts that every
Fano manifold with nef tangent bundle is rational homogeneous. In a nutshell, we showed that flag manifolds are
characterized within the class of Fano manifolds by having only P1-bundles as elementary contractions. In particular,
one may then try to use this result to prove the homogeneity of a certain Fano manifold X by “untangling” its families
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of extremal rational curves, constructing upon X another Fano manifold X̃ dominating it and satisfying the above
property.

More concretely, this “bottom-up” strategy may be roughly described as follows: we start from a Fano manifold
whose homogeneity we want to check; we consider a (not necessarily complete) proper dominating family of minimal
rational curves in X, M

p
←− U

q
−→ X, and ask ourselves whether X̃ = U is again a Fano manifold and, in this case,

proceed by substituting X by X̃. If this procedure can be carried out until we get to a Fano manifold in which all the
families of minimal rational curves are P1-bundles, then the original variety X will be homogeneous.

This process can be shortened in the particular case in which q is smooth and its fibers Mx := q−1(x) are ho-
mogeneous, since rational homogeneous bundles are determined by principal bundles, leading us immediately to a
complete flag bundle Ũ dominating U (see Section 2 below). In order to check that Ũ is in fact a complete flag, we
need to study sections of the bundle Ũ over minimal rational curves in X, which is our motivation to give a “rational
curves oriented” interpretation of Grothendieck’s theorem.

Section 3 is devoted to this topic. More concretely, we will study G/B-bundles (with G semisimple and B ⊂ G a
Borel subgroup) over the Riemann sphere P1. We will see that (up to a choice of a Cartan subgroup H ⊂ B) in each
of these bundles we may define a set of sections, that we call fundamental, that are in one-to-one correspondence with
the Weyl group of G and that, under this correspondence, reflections of the root system correspond to P1-bundles
containing pairs of these sections. Moreover, we will show that one of these sections is minimal –in a deformation
theoretical sense, see Definition 3.1– and that the G/B-bundle is determined by this minimal section and by its self-
intersection numbers within the rk(G) P1-bundles containing it. This information may be then represented by what
we call a tagged Dynkin diagram (see Theorem 3.23 for a precise statement).

As an application, we prove, in Section 4, the following statement:

Theorem 1.1. Let X be a Fano manifold of Picard number one, and p : U → M be an unsplit dominating complete
family of rational curves satisfying that the evaluation morphism q : U → X is smooth. Assume furthermore that the
fiber Mx = q−1(x) is a rational homogeneous space for every x ∈ X. Then X is rational homogeneous.

The relation of this statement with the Campana–Peternell conjecture comes from the fact that the smoothness of
q is satisfied by any unsplit family of rational curves in X if we assume that TX is nef.

We note also that this results resembles the main theorem in [7] (proven first by Mok for Hermitian symmetric
spaces and homogeneous contact manifolds, see [16]), but there are certain differences between the two statements:
on one hand Hwang and Hong need to assume that the image of Mx into P(ΩX,x), the so called VMRT of M at x, is
projectively equivalent to the VMRT of a rational homogeneous manifold X′, while we do not need to consider any
particular projective embedding of Mx. On the other hand, they only need to check the above property on a general
point x ∈ X, while we need to assume that q is smooth, and that every Mx is rational homogeneous. Note that if the
relative Picard number ρ(U/M) is one, it is enough to check the homogeneity condition for a general x ∈ X (see [12,
Section 3]).

Unfortunately, one cannot expect to characterize all the rational homogeneous manifolds of Picard number one in
this way, since there are some examples for which Mx is not homogeneous ([14], see also [18, Proposition 2.20]). We
expect that a similar treatment of non complete families of rational curves may lead to a solution of this problem.

Finally we note that Theorem 1.1 depends on a characterization of complete flag manifolds which is a slightly
stronger version of the main theorem in [19], see Theorem A.1. We show how to prove this statement in Appendix A.

Warning: In previous papers ([17, 18, 19]) we used the term “smooth P1-fibration” for any smooth morphism whose
fibers are isomorphic to P1, reserving the name “P1-bundle” for the Grothendieck projectivization of a rank two
vector bundle. In the present paper, which is about smooth rational homogeneous fiber bundles, the term “P1-bundle”
refers to a smooth morphism whose fibers are isomorphic to P1.

2. Rational homogeneous bundles

Throughout this paper all the varieties will be smooth, projective and defined over the field of complex numbers.
A (smooth, projective) fiber bundle over X is a (smooth, projective) morphism q : E → X between smooth varieties.
We will be interested in the case in which q is smooth, projective, and also isotrivial, which means that all the fibers
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of q over closed points are isomorphic; if F is a variety isomorphic to the fibers of q, we will say that the fiber bundle
is an F-bundle. According to a classical theorem of Fischer and Grauert (cf. [2, page 29]), it follows that a smooth
projective F-bundle q is locally trivial in the analytic topology: there exists then an open covering {Ui, i ∈ I} of X
with the analytic topology and isomorphisms φi : Ui × F → q−1(Ui) commuting with the corresponding projections
onto Ui, named trivializations of q. We may consider {φi} to be the whole atlas of trivializations of q, and then q may
be reconstructed from the complex varieties Ui × F by means of the transitions

φi j = φ−1
j ◦ φi : Ui j × F −→ Ui j × F, (Ui j := Ui ∩ U j),

or, equivalently by the corresponding maps θi j : Ui j → Aut(F) satisfying φi j(x, y) = (x, θi j(x)(y)). It turns out that the
φi j define a cocycle θ ∈ H1(X,Aut(F)), which completely determines the F-bundle q : E → X. Note that this cocycle
is defined over the analytic space associated to X, that we denote also by X, by abuse of notation.

We will assume also that every fiber F of q is rational homogeneous, i.e., that it is isomorphic to the quotient of a
semisimple group by a parabolic subgroup.

Remark 2.1. Note that the representation of F as a quotient of a semisimple group is not unique. Besides eventual
choice of two semisimple groups with the same universal cover, in some occasions a rational homogeneous variety F
may be written as the quotient of two semisimple groups with different associated Lie algebras. This is the case of
P2n−1 (that can be written as a quotient of Sl(2n), PGl(2n − 1) –these two with the same Lie algebra– and Sp(2n)), of
the quadric Q5 (quotient of SO7 and G2), and the spinor variety parametrizing r − 1 dimensional linear subspaces in
a quadric of dimension 2r − 1 (quotient of SO2r+1 and SO2r+2). For irreducible rational homogeneous manifolds (i.e.
rational homogeneous manifolds that are not products), this is the complete list (see [1, Ch. 3, p. 75]).

However, it is known that the identity component of the automorphism group Aut(F) is semisimple [8, Thm. 3.11],
and it acts transitively on F. We will denote it by GF , or G if there is no possible confusion, and then we may write
F as a quotient G/P for some parabolic subgroup P ⊂ G. If we further assume that the base X is simply connected
(this is the case, for instance, if X is Fano or, more generally, rationally connected), then it follows that the cocycle
θ ∈ H1(X,Aut(F)) lies in H1(X,G); otherwise, since G is a normal subgroup of Aut(F), θ would define a nonzero
cocycle in H1(X,Aut(F)/G), which in turn defines an étale covering of X, a contradiction.

Assume now that q : E → X is an F-bundle defined by a cocycle θ ∈ H1(X,G), for a rational homogeneous
manifold F whose automorphism group has identity component G. Then θ defines a G-bundle qG : EG → X, given
by the glueing of Ui ×G by means of the transition functions:

θi j : Ui j → G ↪→ Aut(G),

where G embeds in Aut(G) as the set of automorphism given by left multiplication with elements of G. There is then a
well defined action of G on EG, given by right multiplications by elements of G on every chart. We may now say that
the G-bundle EG is a principal G-bundle over X. If we now take any parabolic subgroup P′ ⊂ G, we may consider the
G/P′-bundle:

qP′ : EP′ := EG ×G G/P′ := (EG ×G/P′)/∼G → X,

where ∼G is the equivalence relation defined by (x, gP′) ∼G (xh, h−1gP′) for every h ∈ G. One may easily check this
G/P′-bundle is defined also by the same cocycle θ ∈ H1(X,G). Note that H1(X,G) is the cohomology of X, regarded
as an analytic space, with values in G, so EP′ is, a priori, only defined as a compact analytic space. However, since we
can embed EP′ into the projectivization of the holomorphic vector bundle qP′ ∗(ω

−r
EP′ |X

) � EG ×P′ H0(G/P′, ω−r
G/P′ ) (for

r � 0), which is an algebraic vector bundle by the GAGA principle ([21]), it follows that EP′ is indeed a projective
variety.

Furthermore, given two parabolic subgroups P1 ⊂ P2 ⊂ G, one has a natural map qP1,P2 : EP1 → EP2 satisfying
qP2 ◦ qP1,P2 = qP1 . In particular we will consider a Borel subgroup B of G contained in P, and define Ẽ := EB, with
projection map q̃ = qB : Ẽ → X, and, for every parabolic P′ ⊃ B, a map q̃P′ := qB,P′ : Ẽ → EP′ . In particular we
have a projection q̃P : Ẽ → EP = E, that we will denote by π : Ẽ → E. The bundle q̃ : Ẽ → X will be called the flag
bundle associated to q : E → X. Note that π is also a flag bundle over E, whose fiber we write as G′/B′, where G′

is the the semisimple group obtained by subsequently quotienting P by its unipotent subgroup and then by the center,
and B′ is the image of B in this quotient.
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We will denote by k the rank of the group G, which can be defined as the dimension of a maximal torus contained
in B, or as the number of simple roots of the root system of the Lie algebra g of G, or as the number of minimal
parabolic subgroups of G containing B. Note that, denoting by P1, . . . , Pk these minimal parabolic subgroups, the
morphisms πi := q̃Pi : Ẽ → Ei := EPi are P1-bundles.

For the reader’s convenience, we present the following diagram that illustrates the notation used (corresponding
to a minimal parabolic subgroup Pi ⊂ P):

E = EP

q

��

Ẽ

π=πP

33

πi //

q̃
,,

EPi

q̃Pi ,P

<<

qPi

""
X

Finally, we may describe the relative canonical class of a G/B-bundle as above. It is well known that KG/B may be
described as follows. Consider ∆ := {αi, i = 1, . . . , k} a base of simple roots of the root system Φ of the Lie algebra
g of G, so that every positive root β ∈ Φ+ is a nonnegative integer combination of the αi’s, and define the integers
b1, . . . , bk by the formula: ∑

β∈Φ+

β =

k∑
t=1

btαt. (1)

Consider also the relative canonical divisors Kt of the projections G/B→ G/Pt. Then:

KG/B =

k∑
t=1

btKt.

Table 1 below contains the values of the integers b1, . . . , bk, for G simple (the numbering of the nodes corresponds to
the one in [10, p. 58]).

D b1, . . . , bk

Ak k, (k − 1)2, . . . , 2(k − 1), k
Bk 2k − 1, 2(2k − 2), . . . , (k − 1)(k + 1), k2

Ck 2k, 2(2k − 1), . . . , (k − 1)(k + 2), k(k + 1)/2
Dk 2k − 2, 2(2k − 3), . . . , (k − 2)(k + 1), (k − 1)k/2, (k − 1)k/2
E6 16, 22, 30, 42, 30, 16
E7 34, 49, 66, 96, 75, 52, 27
E8 92, 136, 182, 270, 220, 168, 114, 58
F4 16, 30, 42, 22
G2 10, 6

Table 1: Coefficients of KG/B in terms of the relative canonical divisors Kt .

On the other hand, one may show that TG/B may be constructed upon the relative tangent bundles of the projections
G/B → G/Pt, via successive use of Lie brackets. We refer the reader to [17, Construction 1] for details on this
construction. In our situation, we may show that, identifying πt |̃q −1(x) : q̃ −1(x) → q̃ −1

t (x) with the projection G/B →
G/Pt, for any x ∈ X then

OẼ(Kπt )|̃q−1(x) = OG/B(Kt), (2)
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and the corresponding successive use of Lie brackets produces the relative tangent bundle of Ẽ. In particular, one
obtains:

Lemma 2.2. The relative canonical class of q̃ satisfies:

Kq̃ =

k∑
t=1

btKπt .

The same argument allows us to compute (the pull-back to Ẽ of) the relative canonical class of q : E → X. Set
D = {1, . . . , k}; let I ⊂ D be the subset defining the parabolic subgroup P, i.e. the set of indices such that the Lie
subalgebra p ⊂ g of P satisfies:

p = h ⊕
⊕
α∈Φ+

g−α ⊕
⊕
α∈Φ+(I)

gα, (3)

where Φ+(I) denotes the subset of Φ+ generated by the simple roots {αi, i < I}. Then, arguing as before, we have:

Lemma 2.3. With the same notation as above, let us consider the integers c1, . . . , ck determined by:∑
β∈Φ+(I)

β =

k∑
t=1

ctαt.

Then:

π∗Kq =

k∑
t=1

(bt − ct)Kπt . (4)

Proof. It is enough to note π∗Kq equals the difference Kq̃−Kπ, where the first summand has been computed in Lemma
2.2, and the second can be computed by applying the same lemma to the flag bundle π : Ẽ → E.

3. Flag bundles over P1: remarks on Grothendieck’s theorem

In this section we will study rational homogeneous bundles over P1. More concretely, since all of them are
contractions of flag bundles, we will concentrate on the case of a G/B-bundle q̃ : Ẽ → P1. We will use the notation
introduced in Section 2.

Inspired by the case of projective bundles over P1, that are determined by the restriction of their relative tangent
bundles to a minimal section, we will study sections of π̃ that satisfy the following minimality condition:

Definition 3.1. A section s : P1 → Ẽ of q̃ is called minimal if, for every x ∈ P1, the irreducible component H of the
scheme HomP1 (P1, Ẽ; x, s(x)) parametrizing sections of q̃ sending x to s(x) is zero-dimensional.

The existence of minimal sections on the G/B-bundle Ẽ is an immediate consequence of the Bend and Break
Lemma (see for instance [4, Proposition 3.11]), once we prove the existence of a section of any kind; this, in turn,
may be obtained, either from a much more general result of Graber, Harris and Starr, [5], or by means of ad hoc
arguments for each of the possible types of semisimple group G, or (as we will do later) by means of Grothendieck’s
theorem on principal G-bundles.

Definition 3.2. Given σ : P1 → Ẽ a section of q̃ : Ẽ → P1, we may consider the projections πt : Ẽ → Et, where
Pt, t = 1, . . . , k. As noted before, the πt’s are P1-bundles, and we may consider the surfaces Ẽt appearing as the fiber
products of Ẽ and the section σ, for every t:

Ẽt //

πt

��

Ẽ

πt

��

P1

σt

JJ

σ

>>

πt◦σ
// P1

Then, for every t = 1, . . . , k, Ẽt is a P1-bundle, that we call the pivotal P1-bundles of q̃ with respect to σ.
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Note that the section σ defines a section σt : P1 → Ẽt. In the case in which σ is minimal in Ẽ, then it is also
minimal in Ẽt. In particular the integers dt = Kπt · σ(P1) are non negative. The main goal of this section is to show
that a minimal section σ, together with the non negative integers dt, determine completely the G/B-bundle Ẽ, and the
main tool we will use is Grothendieck’s theorem on principal G-bundles over P1.

3.1. Grothendieck’s theorem
Let G be a semisimple Lie group, and H ⊂ G be a Cartan subgroup, which is a maximal abelian subgroup of G.

Let N denote the normalizer of H in G, whose quotient N/H is called the Weyl group of G with respect to H. Given any
smooth complex variety X we may consider the cohomology of X with values in the sheafified groups H and G (that,
by abuse of notation, we denote with the same symbols), and the corresponding natural map H1(X,H) → H1(X,G).
This map is equivariant with respect to the conjugation action of the groups N and H. Since the latter acts trivially on
both sets, and N ⊂ G acts trivially on the second, we finally have a map:

H1(X,H)/W → H1(X,G) (5)

Grothendieck’s theorem says the following:

Theorem 3.3 (Grothendieck’s theorem (cf. [6])). With the same notation as above, for X = P1, the map (5) is a
bijection.

This theorem was originally stated for the case of a reductive group G, but we will stick to the semisimple case,
which is the one we are interested in.

Remark 3.4. The standard geometric interpretation of this theorem concerns the case G = PGl(r + 1), where the
theorem tells us that any Pr-bundle over P1 is the projectivization of a direct sum of line bundles. For instance, for
r = 1 and a cocycle θ ∈ H1(P1,G), any choice of a Cartan subgroup H ⊂ G corresponds to a choice of two sections
C0 and C∞ of the corresponding P1-bundle q̃ : Ẽ → P1, satisfying that C0 ·C∞ = 0. These two sections correspond to
two quotients E→ OP1 (ai), i = 1, 2, where Ẽ is isomorphic to the projectivization of a bundle E � OP1 (a1)⊕OP1 (a2).
Typically C0 is associated with the quotient to OP1 (a1), when we choose a1 ≤ a2. Note that C0 is a minimal section of
the P1-bundle, in the sense of Definition 3.1.

Setup 3.5. Throughout the rest of Section 3, G will denote a semisimple Lie group, H ⊂ B ⊂ G a pair of Cartan and
Borel subgroups, and θ ∈ H1(P1,H) a cocycle, whose image into H1(P1,G) defines a G/B-bundle q̃ : Ẽ → X.

Remark 3.6. Note that all the possible Borel subgroups of G are conjugate, and the choice of different Borel sub-
groups produces isomorphic G/B-bundles. On the other hand, the choice of a preimage of θ into H1(P1, B) via the
natural map H1(P1, B) → H1(P1,G) (in the standard language, the choice of a reduction of EG via the inclusion
B ↪→ G), is equivalent to the choice of a holomorphic section of q̃ : Ẽ → X.

Remark 3.7. Following [6], the kernel L of the exponential map sending every v ∈ h to exp(2πıv) ∈ H may be identi-
fied with the dual lattice of the lattice in h∨ generated by the root system Φ. Moreover we have natural homomorphisms
of groups:

H1(P1,H) � H2(P1, L) � L ⊂ h, (6)

satisfying that the conjugation action of W in H1(P1,H) corresponds to the restriction of the dual action of W on h,
as the Weyl group of Φ.

3.2. Fundamental sections of a flag bundle
Let us start by noting some general facts on parabolic subgroups, and their Levi decompositions:

Remark 3.8. Given a semisimple Lie group G and a Cartan subgroup H, let us denote with gothic fonts h, g, as usual,
their associated Lie algebras. Then h ⊂ g defines a root system Φ ⊂ h∨. Any choice of a base of positive simple roots
∆ = {αt, t = 1, . . . , k} corresponds to a choice of a fundamental chamber of the action of the Weyl group W on h,
P = {v ∈ h| αt · v ≥ 0, ∀t} ⊂ h, to a choice of a decomposition Φ = Φ+ ∪ Φ− of the root system in two sets of positive
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and negative roots, and to a choice of a Borel subalgebra b := h ⊕
⊕

β∈Φ− gβ and a corresponding Borel subgroup
B ⊂ G containing H ([9, 27.3]). Given such a Borel subgroup B, for every t = 1, . . . , k we denote by Pt ⊃ B the
parabolic subgroups of G whose Lie algebras are b ⊕ gαt . Dividing Pt by its unipotent radical first, and then by its
center, we obtain a semisimple group Gt, isomorphic to PGl(2), satisfying that the images Ht of H, and Bt of B, into
Gt, are respectively a Cartan and a Borel subgroup of Gt. Note that we have an isomorphism Gt/Bt � Pt/B, and the
natural map Pt/B ⊂ G/B allows us to identify Gt/Bt with the fiber of the canonical projection G/B → G/Pt passing
by the class of the identity modulo B. Moreover, the induced homomorphism of Lie groups

φ : H →
∏

t

Ht (7)

is finite and surjective, since one may easily check that its differential at the identity gives an isomorphism of Lie
algebras dφe : h→

⊕
t ht.

Remark 3.9. Conversely, if we start from a semisimple group G and a Borel subgroup B, we may consider the minimal
parabolic subgroups of G containing B, P1, . . . , Pk. Considering, as above, the semisimple part Gt of Pt, we have a
natural surjective map B →

∏
t Bt. Given, for every t, a Cartan subgroup Ht ⊂ Bt, the inverse image of

∏
t Ht is a

Cartan subgroup of G contained in B.

Example 3.10. In the case of G = PGl(2), each of the two possible choices of a basis of positive simple roots ∆ = {α}
provides an isomorphism α : h → C, under which the lattice L defined in Remark 3.7 may be identified with Z ⊂ C.
Now, if we start from a cocycle θ ∈ H1(P1,H), we may choose ∆ = {α} so that the image of θ in L via (6) has
nonnegative α-coordinate. This integer is classically known as the invariant of the P1-bundle defined by θ, which is
the intersection of its minimal section C0 with its relative canonical line bundle.

In our general setting, we may choose the fundamental chamber P ⊂ h so that the image of θ ∈ H1(P1,H)
into h belongs to P and, by Remark 3.6, we may assume, without loss of generality, that B is the Borel subgroup
of G containing H corresponding to this choice of P. The corresponding base of simple roots is denoted by ∆ =

{α1, . . . , αk}. Any other Borel subgroup of G containing H is the conjugation of B by an element w ∈ W, hence it will
be denoted by Bw.

Definition 3.11. In the setup of 3.5, with the same notation as above the image of θ ∈ H1(P1,H) into each of the sets
H1(P1, Bw), w ∈ W, defines a section of the G/B-bundle q̃ : Ẽ → P1, that we denote by σw : P1 → Cw ⊂ Ẽ. These
sections are called the fundamental sections of Ẽ with respect to θ. In particular, the section corresponding to B will
be called the minimal fundamental section of Ẽ with respect to θ, and denoted by σ : P1 → C ⊂ Ẽ.

Remark 3.12. Note that the set of fundamental sections of Ẽ is in one to one correspondence with the set of possible
Weyl chambers of W in h, which is known to be bijective to W.

For instance, in the case of a P1-bundle treated in Remark 3.4, given H ⊂ G we have precisely two Borel
subgroups containing it, each of them giving rise to one the (fundamental) sections C0 or C∞. In our general setup, we
may consider, for every Borel subgroup Bw containing H, and each positive simple root αt ∈ ∆, the pivotal P1-bundle
Ẽw,t := (πt ◦ σw)∗Ẽ, fitting in the cartesian square:

Ẽw,t //

πw,t

��

Ẽ

πt

��

P1

σw,t

JJ

πt◦σw
//

σw

>>

Et

Let us denote by Cw the image of the section σw. On the other hand, we may consider the reflection rt ∈ W corre-
sponding to a positive simple root αt, and the section σrtw : P1 → Ẽrtw,t, with image Crtw. Then we may claim the
following, that follows from [9, 29.3 Lemma B]:
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Proposition 3.13. With the same notation as above, for every w ∈ W and every αt ∈ ∆,

Ẽw,t = Ẽrtw,t,

and the sections Cw and Crtw are the C0 and C∞ sections of the P1-bundle Ẽw,t.

Remark 3.14. The correspondence between {Cw,Crtw} and {C0,C∞} depends on the particular choices of t and w,
and may be expressed as follows: Cw is the C0 section of Ẽw,t if and only if w(αt) is a positive root. In the particular
case of Bw = B, it follows that the corresponding minimal fundamental section C is a minimal (fundamental) section
for every pivotal P1-bundle Ẽt containing it.

Remark 3.15. Note also that each pivotal P1-bundle Ẽt is defined by the image θt of the cocycle θ via the natural
map H1(P1,H)→ H1(P1,Ht), induced by the group homomorphism H → Ht defined in Remark 3.8.

3.3. The tag of a flag bundle
Let us consider now the differential at the identity of the homomorphism φ of complex tori (7), together with the

corresponding exponential maps defined in Remark 3.7. We have a commutative diagram of group homomorphisms,
with exact rows:

L

��

// h
exp(2πı )

//

φ∗e

��

H

φ

��⊕
t Lt //

⊕
t ht exp(2πı )

//
∏

t Ht

(8)

where Lt denotes the kernel lattice for each Ht.

Definition 3.16. With the same notation as above, denoting and by α′t ∈ h
∗
t the positive root associated to the Borel

subgroup Bt, for each t, the homomorphism of lattices:

L
φ∗e
//

δ

**⊕
t Lt

⊕tα
′
t

// Zk

is called the tagging map of G, and the image of θ ∈ H1(P1,H) � L via δ, δ(θ) is called the tag of the G/B-bundle
q̃ : Ẽ → P1 defined by θ.

Proposition 3.17. With the same notation as above, the G/B-bundle q̃ : Ẽ → P1 defined by θ is completely deter-
mined by its tag δ(θ) = (d1, . . . , dk). Moreover, for every t, dt = Kπt ·C, being C the minimal fundamental section of Ẽ
introduced in Definition 3.11.

Proof. For the first part it is enough to check that the map L→
⊕

t Lt is injective, and this follows from the fact that
φ∗e : h →

⊕
t ht is an isomorphism. For the second, note that dt equals the invariant of the corresponding pivotal

P1-bundle Ẽt, hence it may be interpreted as the intersection number of the relative canonical divisor Kπt with the
minimal fundamental section C.

Remark 3.18. As a consequence of Proposition 3.17, the tag of any G/B-bundle over P1 with respect to a cocycle θ
lies in Zk

≥0. Then δ(θ) shall be thought of as the choice of a non negative integer dt for every positive simple root of G
(with respect to the choice of a base of simple roots, as in Remark 3.8). In particular it is natural to represent it as a
tagged Dynkin diagram, i.e. by “tagging” the t-th node of the Dynkin diagram, corresponding to the root αt, with the
non negative integer dt. A tagged Dynkin diagram obtained in this way is called admissible with respect to G. Note
that a flag manifold may be written as the quotient of different semisimple groups with the same Dynkin diagrams, for
which the concept of admissibility is not the same, in general. Hence it is not true that, for a G/B-bundle over P1,
any k-tuple of non negative integers is admissible with respect to G.
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Example 3.19. For instance, a Pn-bundle P(
⊕

i OP1 (ai)), with a0 ≤ . . . ,≤ an, is determined by the tag (a1 −

a0, . . . , an − an−1) on the Dynkin diagram An (with the standard numbering of its nodes). Hence, every tag is ad-
missible for the group PGl(n + 1), whereas for the group G = Sl(n + 1), the lattice δ(L) of admissible tags has index n
in Zn.

3.4. Minimal fundamental sections vs Minimal sections

Finally we will show the relation between the minimal fundamental sections of a G/B-bundle and its minimal
sections.

Lemma 3.20. With the same notation as above, the minimal fundamental section C of a G/B-bundle defined by a
cocycle θ ∈ H1(P1,H) is a minimal section in the sense of Definition 3.1.

Proof. Since, by construction, C has degree greater than or equal to zero with respect to the relative canonical divisors
Kπt , we may claim that the relative tangent bundle of Ẽ over C, that can be obtained (cf. [17, Construction 1]) from
the relative canonical bundles OẼ(Kπt ) by means of successive Lie brackets, has no positive summands, and hence C
has no deformations with a point fixed.

Conversely, we will show now that a minimal section of a G/B-bundle is a minimal fundamental section, for
a certain choice of a Cartan subgroup. In other words, minimal sections are not necessarily unique, but they are
determined by the different choices of Cartan subgroups of G.

Proposition 3.21. Let q̃ : Ẽ → P1 be a G/B-bundle over P1, and let σ′ : P1 → C′ ⊂ Ẽ be a minimal section in the
sense of Definition 3.1. Then there exists a Cartan subgroup H′ ⊂ G such that C′ is a minimal fundamental section
with respect to H′.

Proof. The section σ′ provides an inverse image θ′ in H1(X, B) of the cocycle in H1(X,G) defining Ẽ. With the same
notation as in Remark 3.8, we consider the images θ′t of θ′ into H1(P1, Bt), t = 1, . . . , k, defined by the minimal
parabolic subgroups Pt containing B; they define k pivotal P1-bundles Ẽ′t containing C′ as a section. Since C′ is
minimal in Ẽ in the sense of Definition 3.1, it is also minimal in each Ẽ′t . But on a P1-bundle it is clear that a minimal
section is a minimal fundamental section, from what it follows that θ′t ∈ H1(P1, Bt) has a (unique) inverse image
in H1(P1,H′t ), for certain Cartan subgroups H′t , t = 1, . . . , k. By Remark 3.9, the inverse image of

∏
t H′t into B

is a Cartan subgroup H′, and the k-tuple (θ′1, . . . , θ
′
k) has a unique inverse image θ′′ ∈ H1(P1,H′), which maps into

θ′ ∈ H1(P1, B). We conclude by noting that, by construction, C′ is a minimal fundamental section of Ẽ with respect
to H′.

Remark 3.22. Given a G/B-bundle q̃, we have defined its tag with respect to a choice of Cartan subgroup H ⊂ G
and a cocycle H1(P1,H). But two of these possible choices, say θ ∈ H1(P1,H) and θ′ ∈ H1(P1,H′), are related by
conjugation with an element g ∈ G, H′ = gHg−1. We may then consider a holomorphic map f : C → G satisfying
f (0) = e and f (1) = g. We choose B and the minimal section C with respect to H as above, and consider, for
every z ∈ C, the corresponding cocycle f (z)θ f (z)−1 ∈ H1(P1, f (z)H f (z)−1) and its image into H1(P1, f (z)B f (z)−1),
that defines the minimal fundamental section of q̃ with respect to f (z)H f (z)−1. We conclude that any two minimal
fundamental sections of q̃ are numerically equivalent, hence δ(θ) depends only on the isomorphism class of the G/B-
bundle.

Summing up, we may write the following statement:

Theorem 3.23. Let G be a semisimple Lie group, and B ⊂ G be a Borel subgroup of G. For any admissible tagged
Dynkin diagram D there exist a G/B-bundle q̃ : Ẽ → P1, unique up to isomorphism, satisfying that the self-
intersection of a minimal section C of q̃ in the t-th pivotal P1-bundle associated to C is equal to the tag dt of the
corresponding t-th node of D.
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4. An application to the Campana–Peternell Conjecture

Along this section, which is devoted to the proof of Theorem 1.1, X will be a CP-manifold, that is a Fano manifold
with nef tangent bundle. We will consider an unsplit complete family M

p
←− U

q
−→ X of rational curves in X.

By definition, a complete family of rational curves is the universal family of curves parametrized by an irreducible
component M of RatCurvesn(X). Then, the condition on the nefness of TX tells us that the evaluation morphism q
is dominant and smooth (see, for instance, [18, Prop. 2.10]). For any x ∈ X, the smooth subvariety q−1(x), which is
assumed to be a rational homogeneous manifold, will be denoted by Mx. Let us start by fixing some extra notation.

Notation 4.1. We will denote by G the identity component of Aut(Mx), so that every Mx is isomorphic to the quotient
of G by a parabolic subgroup P. Then a Borel subgroup B of G contained in P defines a G/B-bundle over X, that we
denote by q̃ : Ũ → X, that admits a contraction π : Ũ → U. Note that π is also a flag bundle over U, whose fiber we
write as G′/B′ (as in Section 2, G′ is the semisimple group obtained by subsequently quotienting P by its unipotent
subgroup and then by the center, and B′ is the image of B in this quotient).

We will denote by k the rank of G, and set D = {1, . . . , k}. Every index i ∈ D corresponds to a minimal parabolic
subgroup Pi ⊂ G containing B, that provides an elementary contraction πi : Ũ → Ui, which is a a P1-bundle whose
relative canonical classes we denote by Ki. We set I := {i ∈ D | Pi ⊂ P}, so that the contraction π : Ũ → U factors
via πi, for every i ∈ I.

Let f : P1 → X be the normalization of any curve Γ of the family M and consider the pull-back f ∗U; since Γ is an
element of the family there is a natural section s : P1 → s(P1) ⊂ f ∗U. Denote by s̃ : P1 → s∗ f ∗Ũ a minimal section
of the G′/B′-bundle s∗ f ∗Ũ over P1 and by Γ̃ its image. We have then the following commutative diagram:

s∗ f ∗Ũ
J

� _

��

π
//

� _

��

P1
� _

s

��

s̃
vv

f ∗Ũ
J

f̃

��

π
// f ∗U

J

f

��

q
// P1

f

��

M Ũp◦π
oo

π
// U

pjj q
// X

The curve s(P1) is contracted by the composition map f ∗U → U → M and, moreover, it cannot deform in
f ∗U, otherwise its deformations would give a positive dimensional subvariety of M determining the same curve in X.
Hence, identifying s∗ f ∗Ũ with its image in f ∗Ũ, we may say that Γ̃ is a minimal sections of both the G/B-bundle f ∗U
and the G′/B′-bundle s∗ f ∗Ũ. By Proposition 3.21 this minimal section can be regarded as a minimal fundamental
section for each of the bundles, and Theorem 3.23 tells us that the two bundles are determined by two tagged Dynkin
diagrams supported on the Dynkin diagrams D and D′ of G and G′, respectively.

Moreover, D′ corresponds to the Dynkin subdiagram of D obtained by eliminating from D the nodes indexed by
I ⊂ D and, by the interpretation of the tags given in Proposition 3.17, the tags agree with the inclusion D′ ⊂ D.

Lemma 4.2. With the same notation as above, the G′/B′-bundle s∗ f ∗Ũ is trivial over P1.

Proof. Recall that the t-th tag of G/B is given by dt := Γ̃ · Kt. In view of Theorem 3.23 it is enough to show that
dt = 0 for every t < I. By Lemma 2.3 applied to the G/B-bundle f ∗Ũ→ P1:

π∗Kq =

k∑
t=1

(bt − ct)Kπt . (9)
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where the integers bt, ct are given by∑
β∈Φ+

β =
∑
i∈D

biαi,
∑

β∈Φ+(I)

β =
∑
j∈D

c jα j =
∑
j∈D\I

c jα j. (10)

Note that, by definition, we have bt ≥ ct for every t ∈ D. By Equation (9), we may then write, for any x ∈ X

dim(Mx) = π∗Kq · Γ̃ =
∑
j<I

(b j − c j)d j +
∑
i∈I

bidi, (11)

where the first equality follows from the fact that dim(Mx) = −KX · Γ − 2 = Kq · f (s(P1)) and the projection formula.
Since the minimality of Γ̃ implies that dt ≥ 0 for all t ∈ D, we may conclude by showing the following:

(4.2.1) b j − c j > 0 for all j < I.

(4.2.2)
∑

i∈I bidi ≥ dim(Mx).

In order to prove (4.2.1), we notice that, having b j = c j for some j < I, is equivalent to say that the only positive
roots having nonzero coefficient with respect to α j are the elements of Φ+(I).

Since G is the identity component of Aut(G/P), it follows that every connected component of the Dynkin diagram
D of G must contain a node corresponding to an index i ∈ I; in particular, the connected component D′ of D

containing the node corresponding to α j contains a node corresponding to an index i ∈ I. But then the longest root β
of the root subsystem determined by D′ is a root of D, whose coordinates with respect to α j and αi are different from
zero, hence β ∈ Φ+ \ Φ+(I), which contradicts that b j = c j.

In order to show (4.2.2), we claim first that di > 0 for every i ∈ I. In fact, if di = 0 for some i ∈ I, the i-th
pivotal P1-bundle Ũi which maps isomorphically into f ∗U via π, would be isomorphic to P1 ×P1. But a section of Ũi

maps to s(P1), which is contracted by p ◦ f ; hence the image of π(Ũi) into M would be a curve, whose points would
parametrize the same curve in X, a contradiction.

At this point, in order to conclude it is enough to check that∑
i∈I

bi ≥ ](Φ+ \ Φ+(I)) = dim(Mx).

The last equality follows from the hypothesis Mx = G/P. Since every root in Φ+ \ Φ+(I) increases at least in a unity
at least an integer bi, the first inequality follows, and the lemma is proved.

Corollary 4.3. Let X be as in Theorem 1.1. Then, with the same notation as above, the morphism p ◦ π : Ũ → M

factors via a smooth P1-bundle p̃ : Ũ→ M̃, for a smooth projective variety M̃.

Proof. Write, as in Notation 4.1, any fiber F′ of π : Ũ → U as a quotient G′/B′. By Lemma 4.2, the fibers of
the smooth morphism p ◦ π are isomorphic to the rational homogeneous manifold G′/B′ × P1. Moreover, since M

is rationally connected (because U is rationally connected), hence simply connected, p ◦ π is defined by a cocycle
θ′ ∈ H1(M,G′ × Aut(P1)). The image of this cocycle via the natural map to H1(M,G′) provides a G′/B′-bundle
π̃ : M̃→M, whose pull-back to U via p is precisely π.

We may now finish the proof of the main result of this Section.

Proof of Theorem 1.1. Note that, by construction, ρŨ = ρG/B +ρX = ρG/B + 1. On one hand, every minimal parabolic
subgroup Pi ⊃ B, i = 1, . . . , k provides a smooth P1-bundle Ũ→ Ui. Moreover, the classes Γi of the curves contracted
by them are independent in N1(Ũ). On the other hand, the class Γ of a fiber of the morphism p̃ provided by Corollary
4.3 does not lie in the hyperplane of N1(Ũ) generated by the Γi’s, hence {Γ,Γ1, . . . ,Γk} is a basis of N1(Ũ). We
may now apply Theorem A.1, which is a refined version of the Main Theorem in [19], and claim that Ũ is rational
homogeneous. Then X, which is the image of a contraction of Ũ, is rational homogeneous, too.
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Remark 4.4. Note that, along the proof of Theorem 1.1 and its preliminary lemmata, we have not really used the
assumption on M being a component of RatCurvesn(X). In fact we are only using that p : U→M is a P1-bundle with
an evaluation morphism q onto X, for which the natural map M → RatCurvesn(X) is surjective onto an irreducible
component M′ and finite. In fact, it suffices to assume that M → M′ is surjective and generically finite, since the
existence of a curve contracted by M → M′ easily implies the existence of a curve in a fiber of the G/P-bundle
q : U → X contracted also by the natural morphism from U to the universal family U′ over M′. Since this curve is
free in U, it follows that dim(U) > dim(U′) and hence dim(M) > dim(M′), a contradiction. Hence, this observation
allows us to state the following, slightly more general, result.

Corollary 4.5. Let U be a smooth complex projective algebraic variety, and p : U → M, q : U → X be two smooth
fiber bundles, with fibers isomorphic to P1 and to a rational homogeneous manifold G/P, respectively. If moreover
b2(X) = 1, and the natural map M→ RatCurvesn(X) is a local isomorphism at a general point, then X, M and U are
rational homogeneous.

A. Appendix: Characterization of flag manifolds revisited

The main result of [19] states that a Fano manifold whose elementary contractions are P1-bundles is necessarily
rational homogeneous. In this Appendix we will prove a slightly more general form of that statement, namely:

Theorem A.1. Let X be a smooth projective variety of Picard number n, satisfying that there exist Γi ∈ N1(X),
i = 1, . . . , n, independent KX-negative classes generating n extremal rays, whose associated elementary contractions
πi : X → Xi are smooth P1-bundles. Then X is isomorphic to a flag manifold G/B, for some semisimple group G.

First of all we will show that, as in the proof of [19, Theorem 1.2], we may use the P1-bundles to construct a set of
reflections in N1(X), generating a finite group that turns out to be the Weyl group of a semisimple Lie algebra g. We
then call homogeneous model of X the flag manifold G/B associated to the corresponding Lie group G. One may then
identify appropriately the relative anticanonical divisors −Ki of the P1-bundles of X with the relative anticanonical
divisors −Ki of the homogeneous model G/B, via a linear isomorphism ψ : N1(X) → N1(G/B) preserving the
cohomology of line bundles.

We will then use this result to prove that the cone of curves of X is generated by the classes of the Γi’s. This
implies that X is a Fano manifold, whose elementary contractions are P1-bundles, and the result follows then from
[19, Theorem 1.2].

A.1. The homogeneous model of X
Following [19], we consider W to be the subgroup of Gl(N1(X)) generated by the involutions of N1(X) defined

by ri(L) := L + (L · Γi)Ki, where, Ki denotes the relative canonical bundle of πi. Moreover, for every i we consider
the affine involution of N1(X) defined as the translation of ri by KX/2, that is r′i (L) := ri(L − KX/2) + KX/2 (note that
Ki · Γi = KX · Γi = −2, for all i, so we may also write r′i (L) := L + (L · Γi + 1)Ki). Let us denote by W ′ the group
generated by them, which is the translation by KX/2 of the group W. Then the arguments provided in [19, Section 2]
work in our setting, and we may state the following:

Lemma A.2. Under the assumptions of Theorem A.1,

(a) H j(X, L) = H j+sgn(L·Γi+1)(X, r′i (L)) for every i = 1, . . . , n, j ∈ Z.

(b) χ(X, L) = ±χ(X,w′(L)), for every L ∈ Pic(X) and for every w′ ∈ W ′.

(c) The group W is finite.

Proof. Follow verbatim Lemma 2.3, Lemma 2.7, Corollary 2.8 and Proposition 2.9 in [19].

Corollary A.3. With the same notation as above

(a) W is the Weyl group of a reduced root system Φ := {w(−Ki)| w ∈ W, i = 1, . . . , n} ⊂ N1(X), defining a
semisimple Lie algebra g.
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(b) The set ∆ := {−Ki, i = 1, . . . , n} is a base of positive simple roots for Φ, and the Cartan matrix of Φ with respect
to ∆ is the intersection matrix (−Ki · Γ j)i j; in particular, this matrix is nonsingular.

(c) Given the decomposition Φ = Φ+ ∪ Φ− determined by the base ∆, the class −KX equals
∑
β∈Φ+ β.

Proof. Items (a) and (b) follow by Corollary 2.10 and Proposition 2.13 in [19]. For the third part, note that B =∑
β∈Φ+ β satisfies B · Γi = 2, for all i (see [10, 10.2, Cor. of Lemma B]). Since −KX satisfies the same property, the

equality follows by (b).

We may then consider a semisimple Lie group G with Lie algebra g, and the corresponding flag manifold X =

G/B, that we call the homogeneous model of X. We denote its corresponding P1-bundles, fibers, relative canonicals,
reflections, etc, by πi : X → Xi, Γi, Ki, ri, etc. By Corollary A.3, we may now define linear isomorphisms:

ψ : N1(X)→ N1(X), ψ′ : N1(X)→ N1(X),

sending Ki to Ki and Γi to Γi, and, therefore, satisfying that ψ(L) · ψ′(Γ) = L · Γ, for all L ∈ N1(X), Γ ∈ N1(X), and
sending Φ to Φ. Then:

Lemma A.4. With the same notation as above, the isomorphism ψ sends KX to KX . Moreover, we have isomorphisms
of groups W � W, W ′ � W ′, compatible via ψ with their actions on N1(X) and N1(X).

Proof. The first part follows from Corollary A.3 (c). For the second part, define the isomorphisms of groups by
sending ri to ri and r′i to r′i .

One of our first goals will be to prove that the map ψ preserves the cohomology of line bundles. In order to do
that, we need first to prove that the dimension of X equals the dimension of its homogeneous model.

Remark A.5. Note that the hypotheses in Theorem A.1 suffice to claim that X is rationally chain connected with
respect to the curves Γi, i = 1, . . . , n. In fact, we may consider the rationally connected fibration with respect to the
families of deformations of the Γi’s (see [13, IV.4.16]), X // Z , which is a proper map from an open subset of X
onto its image. If dim(Z) > 0, then we may choose an effective divisor on Z and consider its strict transform H in X.
By construction, H has intersection zero with every Γi, a contradiction. In particular we may claim that:

• Hi(X,OX) = 0 for i > 0 (cf [13, IV.3.8]), and that, by Serre duality,

• m := dim(X) is the only integer satisfying that Hm(X,KX) , 0.

Corollary A.6. With the same notation as above, m = dim(X), which is equal to the length of the longest element of
W.

Proof. It is enough to find an element of the affine Weyl group w′ ∈ W ′ satisfying that w′(OX) = KX . In fact, if this is
the case, the only index m in which KX has nonzero cohomology would be determined by w′; since on the other hand
we would also have w′(OX) = KX (by Lemma A.4), the integer m would be the same for X and X.

The condition required is equivalent to find an element w ∈ W such that w(−KX) = KX . Now, it is well known (see
[11, Section 1.8]) that the longest element of W satisfies this property.

Corollary A.7. With the same notation as above, χ(X, L) = χ(X, ψ(L)), for all L ∈ Pic(X) satisfying that ψ(L) ∈
Pic(X).

Proof. As in [19, Def. 2.6] we consider the polynomial function, of degree smaller than or equal to m, χX : N1(X)→
R, satisfying that χX(L) = χ(X, L) for every L ∈ Pic(X). On one hand, one may prove that (cf. [19, Prop. 2.9]) χX

vanishes on the hyperplanes w′(KX/2 + (Γi)⊥) for every i and every w′ ∈ W ′, and there is one of these hyperplanes for
every positive root β ∈ Φ+. Then χX vanishes in at least m = dim(X) = ](Φ+) hyperplanes of N1(X). Let 1 + Fβ = 0
denote the equation of the hyperplane determined by β ∈ Φ+; since the degree of χX is not greater than m, it follows
that

χX = a
∏
β∈Φ+

(1 + Fβ),

where a = χX(OX), which is equal to 1 by Remark A.5. In particular, χX is completely determined by the root system
Φ, and our statement follows.
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Proposition A.8. With the same notation as above, hi(X, L) is equal to hi(X, ψ(L)), for all L ∈ Pic(X) ∩ ψ−1(Pic(X)),
and every integer i.

Proof. Let us also denote by N ⊂ N1(X) the dual cone of the cone generated by Γ1, . . . ,Γn. Note that it is not true a
priori –as it is in the case of a flag manifold G/B, and of any X in the setup of [19]– that N = Nef(X). On the other
hand, arguing as in [19, Cor. 2.19], we may state that the interior of N is a fundamental chamber for the action of W
on N1(X), and that the interior of N′ := N + KX/2 is a fundamental chamber for the action of W ′ on N1(X).

Let us consider a reduced sequence of reflections in W ′, (r′i1 , . . . , r
′
im

), associated with simple roots (−Ki1 , . . . ,−Kim ),
whose composition is the longest element w′0 of the group W ′. Given a divisor L ∈ N′ ∩ Pic(X) satisfying that
ψ(L) ∈ Pic(X), we may construct recursively the divisors L1 := ri1 (L), L2 := r′i2 ◦ r′i1 (L), . . . , Lm := w′0(L). We consider
also the corresponding sequence (L1, . . . , Lm) of divisors in X constructed upon L := ψ(L) via the same sequence
reflections; note that L j = ψ(L j) for all j, by Lemma A.4. At every step, the cohomology of L j+1 is obtained from
the cohomology of L j by shifting its degree by +1 or −1, as described in Lemma A.2 (a), depending only on the
intersection number L j ·Γi j+1 . In the case of X = G/B the degree of the shifting is +1 at every step, by the Borel–Weil–
Bott theorem. Since L j · Γi j+1 = ψ(L j) · ψ′(Γi j+1 ) = L j · Γi j+1 , it follows that at every step the degree of the shifting is +1
for X, as well. In particular, for any positive integer i, we have:

Hi(X, L) = Hm+i(X,w′0(L)) = 0,

and we may conclude that:
H0(X, L) = χ(X, L) = χ(X, ψ(L)) = H0(X, ψ(L)).

Finally, using that the interior of N′ is a fundamental chamber for the action of W ′ on N1(X), we may use Lemma A.2
(a) to conclude that the statement holds for every divisor L ∈ Pic(X) ∩ ψ−1(Pic(X)).

A.2. The Mori cone of X
We are now ready to finish the proof of Theorem A.1, by reducing it to [19, Theorem 1.2] via the following

description of the cone of effective curves of X:

Proposition A.9. With the same notation as above, NE(X) is the simplicial cone generated by Γ1, . . . ,Γn. In particular
X is a Fano manifold.

To this end, we will use the Bott-Samelson varieties of X, whose construction we recall here (see [19, Section 3]):

Construction 1. Given a sequence ` = (l1, . . . , lr), li ∈ {1, 2, . . . , n}, set `[s] := (l1, . . . , lr−s) for every s ≤ r; in
particular `[0] = `. Fix a point x ∈ X. Given a sequence ` = (l1, . . . , lr) of indices in {1, 2, . . . , n}, for every
s = 0, . . . , r we construct a manifold Z`[s], s = 0, . . . , r, called the Bott-Samelson variety associated to `[s], together
with morphisms

f`[s] : Z`[s] → X, p`[s+1] : Z`[s] → Z`[s+1],

which are defined recursively as follows: for s = r we set Z`[r] := {x} and let f`[r] : {x} → X be the inclusion. Then for
s < r we consider the elementary contraction πlr−s : X → Xlr−s determined by the extremal ray generated by Γlr−s , the
composition g`[s+1] := πlr−s ◦ f`[s+1] : Z`[s+1] → Xlr−s , and define Z`[s] upon Z`[s+1] as the fiber product with πlr−s :

Z`[s]
f`[s]

//

p`[s+1]

��

X

πlr−s

��

Z`[s+1]

f`[s+1]

<<

g`[s+1]
// Xlr−s

A key result for our proof of Proposition A.9 will be the following:

Proposition A.10. [Cf. [19, Corollary 3.18]] Let ` = (l1, . . . , lr) be a sequence, with l j ∈ {1, . . . , n}, for all j. Then
dim f`(Z`) = dim Z` if and only if w(`) is reduced.
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Since, with our current assumptions, we do not have the ampleness of −KX , the proof given in [19] needs to be
slightly modified, by using weaker versions of [19, Lemma 3.14 and Proposition 3.17]:

Lemma A.11. Let D be a nef divisor on Z`. Then Hi(Z`, f ∗` (KX/2) + D) = 0 for every i > 0.

Proof. See [19, Proof of Lemma 3.14].

Proposition A.12. Let L ∈ Pic(X). Then χ(Z`, f ∗` L) = χ(Z`, f
∗

`ψ(L)) and, if L − KX/2 is nef, then h0(Z`, f ∗` L) =

h0(Z`, f
∗

`ψ(L)). In particular, if L is nef as well, then f ∗` L is big if and only if f
∗

`ψ(L) is big.

Proof. The first part follows verbatim from the proof of [19, Proposition 3.17]. For the second part we notice that
ψ(Nef(X)) ⊂ Nef(X), since this last cone is the dual of the cone generated by the Γi’s, and that ψ(KX) = KX . Therefore,
if L−KX/2 is nef, then the higher cohomologies of f ∗` L and f

∗

`ψ(L) vanish by Lemma A.11. The last statement follows
from [15, Lemma 2.2.3], by applying the argument above to rL − KX/2 = (r − 1)L + (L − KX/2), for r � 0.

Proof of Proposition A.10. Let us consider the homogeneous model X of X and the corresponding Bott-Samelson
variety Z`, with evaluation f ` : Z` → X. It is known that the property holds for f `, since f `(Z`) is the Schubert variety
Bw(`)B/B of X = G/B.

Take an ample line bundle L ∈ Pic(X) satisfying that L − KX/2 is nef. Since ψ(Nef(X)) ⊂ Nef(X) (see the proof
of Proposition A.12), then ψ(L) is ample on X. Hence f

∗

`(ψ(L)) is big if and only if w(`) is reduced, by our first
observation above. By Proposition A.12, we then have that f ∗` L is big if and only if w(`) is reduced. Clearly f ∗` L is
big if and only if dim f`(Z`) = dim Z`, and the statement is proved.

Proof of Proposition A.9. In order to prove that NE(X) is a simplicial cone generated by Γ1, . . . ,Γn, it is enough to
show that for every proper subset I ⊂ {1, . . . , n} there exists a contraction πI : X → XI satisfying that πI∗(Γi) = 0 if
and only if i ∈ I.

Fix a proper subset I ⊂ {1, . . . , n}. Following [13, IV. Theorem 4.16], there exists a proper fibration πI : X0 → X0
I ,

defined on an open subset X0 ⊂ X, whose fibers are Chains(I)-equivalence classes: by definition, two points in X
are in the same Chains(I)-equivalence class if and only if there exists a connected chain of rational curves, whose
irreducible components are curves in the classes Γi, i ∈ I, connecting them. In order to conclude the proof, it suffices
to show that, πI is defined on X, that is X0 = X. But, by [3, Proposition 1], the indeterminacy locus X \ X0 of πI is
contained in the union of Chains(I)-equivalence classes of dimension greater than the dimension of the general one,
hence it is enough to prove that all the Chains(I)-equivalence classes have the same dimension.

Let ` = (l1, . . . , lr) be a reduced list such that li ∈ I, for all i, and w(`) is the longest word in the subgroup WI ⊂ W
generated by the reflections ri, i ∈ I. Let x ∈ X be any point, and Z` be the Bott-Samelson variety associated to ` such
that Z`[r] = {x}.

Clearly f`(Z`) is contained in the Chains(I)-equivalence class containing x; let us show that the opposite in-
clusion holds. Assume, by contradiction, that this is not the case. Then there exists lr+1 ∈ I such that, being
`′ = (l1, . . . , lr, lr+1), we have f`(Z`) ( f`′ (Z`′ ). Since these two varieties are irreducible, dim Z` = dim( f`(Z`)) <
dim( f`′ (Z`′ )), hence dim( f`′ (Z`′ )) = dim Z`′ . This, by Proposition A.10, contradicts the fact that `′ is not reduced.

Then f`(Z`) is the Chains(I)-equivalence class containing x. In particular, since ` is reduced, we have dim f`(Z`) =

dim Z` = r, by Proposition A.10 again, and all Chains(I)-equivalence class have the same dimension.
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pp. 613–626.

[13] Kollár, J., 1996. Rational curves on algebraic varieties. Vol. 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series
of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
Springer-Verlag, Berlin.
URL http://dx.doi.org/10.1007/978-3-662-03276-3

[14] Landsberg, J. M., Manivel, L., 2003. On the projective geometry of rational homogeneous varieties. Comment. Math. Helv. 78 (1), 65–100.
URL http://dx.doi.org/10.1007/s000140300003

[15] Lazarsfeld, R., 2004. Positivity in algebraic geometry. I. Vol. 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series
of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
Springer-Verlag, Berlin, classical setting: line bundles and linear series.
URL http://dx.doi.org/10.1007/978-3-642-18808-4

[16] Mok, N., 2008. Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents.
In: Third International Congress of Chinese Mathematicians. Part 1, 2. Vol. 2 of AMS/IP Stud. Adv. Math., 42, pt. 1. Amer. Math. Soc.,
Providence, RI, pp. 41–61.
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