Thispaperpresentsthefirstresultsofaresearchwhichappliedageneticalgorithmtocalibrateamicroscopictrafficsimulationmodelbasedonspeed–densityrelationships.AlargesetoftrafficdatacollectedfromtheA22Freeway,Italy,wasusedandacomparisonwasperformedbetweenthefieldmeasurementsandthesimulationoutputsobtainedforatestfreewaysegmentbyusingtheAimsunmicroscopicsimulator.Thecalibrationwasformulatedasanoptimizationproblemtobesolvedbasedonageneticalgorithm;theobjectivefunctionwasdefinedinordertominimizethedifferencesbetweenthesimulatedandrealdatasetsinthespeed–densitygraphs.Forthispurpose,thegeneticalgorithmtoolinMATLAB®wasapplied.Keepinginmindtheobjectivetoautomatizethisprocess,theoptimizationtechniquewasattachedtoAimsunviaasubroutine,sothatthedatatransferbetweenthetwoprogramscouldautomaticallyhappen.AnexternalscriptwritteninPythonallowedtheMATLAB®softwaretointeractwithAimsunsoftware.Abettermatchtothefielddatawasreachedwiththeoptimizationparameterssetwiththegenetical-algorithm.Inordertochecktowhatextentthemodelreplicatedreality,modelvalidationwasalsoaddressed.Resultsshowedthatageneticalgorithmisusefullyapplicableinthecalibrationprocessofthemicroscopictrafficsimulationmodel.Beneficialeffectsareexpectedbyapplyingthesuggestedoptimizationtechniquesinceitsearchesforanoptimumsetofparametersthroughanefficientsearchmethod.
Traffic simulation models calibration using speed-density relationship: An automated procedure based on genetic algorithm / Chiappone, Sandro; Giuffrè, Orazio; Granà, Anna; Mauro, Raffaele; Sferlazza, Antonino. - In: EXPERT SYSTEMS WITH APPLICATIONS. - ISSN 0957-4174. - 44:(2016), pp. 147-155. [10.1016/j.eswa.2015.09.024]
Traffic simulation models calibration using speed-density relationship: An automated procedure based on genetic algorithm
Mauro, Raffaele;
2016-01-01
Abstract
Thispaperpresentsthefirstresultsofaresearchwhichappliedageneticalgorithmtocalibrateamicroscopictrafficsimulationmodelbasedonspeed–densityrelationships.AlargesetoftrafficdatacollectedfromtheA22Freeway,Italy,wasusedandacomparisonwasperformedbetweenthefieldmeasurementsandthesimulationoutputsobtainedforatestfreewaysegmentbyusingtheAimsunmicroscopicsimulator.Thecalibrationwasformulatedasanoptimizationproblemtobesolvedbasedonageneticalgorithm;theobjectivefunctionwasdefinedinordertominimizethedifferencesbetweenthesimulatedandrealdatasetsinthespeed–densitygraphs.Forthispurpose,thegeneticalgorithmtoolinMATLAB®wasapplied.Keepinginmindtheobjectivetoautomatizethisprocess,theoptimizationtechniquewasattachedtoAimsunviaasubroutine,sothatthedatatransferbetweenthetwoprogramscouldautomaticallyhappen.AnexternalscriptwritteninPythonallowedtheMATLAB®softwaretointeractwithAimsunsoftware.Abettermatchtothefielddatawasreachedwiththeoptimizationparameterssetwiththegenetical-algorithm.Inordertochecktowhatextentthemodelreplicatedreality,modelvalidationwasalsoaddressed.Resultsshowedthatageneticalgorithmisusefullyapplicableinthecalibrationprocessofthemicroscopictrafficsimulationmodel.Beneficialeffectsareexpectedbyapplyingthesuggestedoptimizationtechniquesinceitsearchesforanoptimumsetofparametersthroughanefficientsearchmethod.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0957417415006466-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
875.07 kB
Formato
Adobe PDF
|
875.07 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione