A major challenge for systems neuroscience is to break the neural code. Computational algorithms for encoding information into neural activity and extracting information from measured activity afford understanding of how percepts, memories, thought, and knowledge are represented in patterns of brain activity. The past decade and a half has seen significant advances in the development of methods for decoding human neural activity, such as multivariate pattern classification, representational similarity analysis, hyperalignment, and stimulus-model-based encoding and decoding. This article reviews these advances and integrates neural decoding methods into a common framework organized around the concept of high-dimensional representational spaces.
Scheda prodotto non validato
I dati visualizzati non sono stati ancora sottoposti a validazione formale da parte dello Staff di IRIS, ma sono stati ugualmente trasmessi al Sito Docente Cineca (Loginmiur).
Titolo: | Decoding Neural Representational Spaces Using Multivariate Pattern Analysis |
Autori: | Haxby, James Van Loan; Andrew C., Connolly; J., Swaroop Guntupalli |
Autori Unitn: | |
Titolo del periodico: | ANNUAL REVIEW OF NEUROSCIENCE |
Anno di pubblicazione: | 2014 |
Codice identificativo Scopus: | 2-s2.0-84904482224 |
Codice identificativo ISI: | WOS:000348454500022 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1146/annurev-neuro-062012-170325 |
Handle: | http://hdl.handle.net/11572/99694 |
Appare nelle tipologie: | 03.1 Articolo su rivista (Journal article) |