In this paper we propose a new spatially high order accurate semi-implicit discontinuous Galerkin (DG) method for the solution of the two dimensional incompressible Navier–Stokes equations on staggered unstructured curved meshes. While the discrete pressure is defined on the primal grid, the discrete velocity vector field is defined on an edge-based dual grid. The flexibility of high order DG methods on curved unstructured meshes allows to discretize even complex physical domains on rather coarse grids. Formal substitution of the discrete momentum equation into the discrete continuity equation yields one sparse linear equation system with four non-zero blocks per element for only one scalar unknown, namely the pressure. The method is computationally efficient, since the resulting system is not only very sparse but also symmetric and positive definite for appropriate boundary conditions. Furthermore, all the volume and surface integrals needed by the scheme presented in this paper depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessor stage, which leads to savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The method is validated for polynomial degrees up to p=3 by solving some typical numerical test problems and comparing the numerical results with available analytical solutions or other numerical and experimental reference data. © 2014 Elsevier Inc. All rights reserved.
A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations / Tavelli, Maurizio; Dumbser, Michael. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - STAMPA. - 248:(2014), pp. 70-92. [10.1016/j.amc.2014.09.089]
A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations
Tavelli, Maurizio;Dumbser, Michael
2014-01-01
Abstract
In this paper we propose a new spatially high order accurate semi-implicit discontinuous Galerkin (DG) method for the solution of the two dimensional incompressible Navier–Stokes equations on staggered unstructured curved meshes. While the discrete pressure is defined on the primal grid, the discrete velocity vector field is defined on an edge-based dual grid. The flexibility of high order DG methods on curved unstructured meshes allows to discretize even complex physical domains on rather coarse grids. Formal substitution of the discrete momentum equation into the discrete continuity equation yields one sparse linear equation system with four non-zero blocks per element for only one scalar unknown, namely the pressure. The method is computationally efficient, since the resulting system is not only very sparse but also symmetric and positive definite for appropriate boundary conditions. Furthermore, all the volume and surface integrals needed by the scheme presented in this paper depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessor stage, which leads to savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The method is validated for polynomial degrees up to p=3 by solving some typical numerical test problems and comparing the numerical results with available analytical solutions or other numerical and experimental reference data. © 2014 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
SIDG3.pdf
Solo gestori archivio
Descrizione: Articolo
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
12.01 MB
Formato
Adobe PDF
|
12.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione