We study a nonlinear partial differential equation of the calculus of variation in a bounded domain, perturbed by noise; we allow stochastic boundary conditions that depend on the time derivative of the solution on the boundary. This work provides the existence and uniqueness of the solution and it shows the existence of an ergodic invariant measure for the corresponding transition semigroup; furthermore, under suitable additional assumptions, uniqueness and strong asymptotic stability of the invariant measure are proved.

A variational approach to stochastic nonlinear diffusion problems with dynamical boundary conditions

Bonaccorsi, Stefano;Ziglio, Giacomo
2014

Abstract

We study a nonlinear partial differential equation of the calculus of variation in a bounded domain, perturbed by noise; we allow stochastic boundary conditions that depend on the time derivative of the solution on the boundary. This work provides the existence and uniqueness of the solution and it shows the existence of an ergodic invariant measure for the corresponding transition semigroup; furthermore, under suitable additional assumptions, uniqueness and strong asymptotic stability of the invariant measure are proved.
Bonaccorsi, Stefano; Ziglio, Giacomo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/99252
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact