Activation of the Janus kinases (JAK) and signal transducers and activator of transcription (STAT) proteins in response to specific cytokines and growth factors has been investigated primarily in cells of non-neuronal origin. More recently, the JAKs and the STATs have also been found to be active in the developing and mature brain, providing evidence for important roles played by these molecules in the control of neuronal proliferation, survival and differentiation. Nothing, however, is known about their occurrence and role(s) in the aged brain. We, therefore, investigated the presence of Stat3 and Stat1 in aged-rat brain, and have found that the Stat3 protein was markedly down regulated with respect to adult tissue, while Stat1 remained invariant. We also investigated the potential role of some growth factors in the activation of the JAK/STAT in mature neurons, exposing primary neuronal cells to ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Besides CNTF, which is known to recruit Stat3, we found that Stat3 was also tyrosine phosphorylated by bFGF. These data are indicative of an important role of Stat3 and Stat1 in regulating the physiological status of mature neurons.
STAT signalling in the mature and aging brain.
Conti, Luciano;
2000-01-01
Abstract
Activation of the Janus kinases (JAK) and signal transducers and activator of transcription (STAT) proteins in response to specific cytokines and growth factors has been investigated primarily in cells of non-neuronal origin. More recently, the JAKs and the STATs have also been found to be active in the developing and mature brain, providing evidence for important roles played by these molecules in the control of neuronal proliferation, survival and differentiation. Nothing, however, is known about their occurrence and role(s) in the aged brain. We, therefore, investigated the presence of Stat3 and Stat1 in aged-rat brain, and have found that the Stat3 protein was markedly down regulated with respect to adult tissue, while Stat1 remained invariant. We also investigated the potential role of some growth factors in the activation of the JAK/STAT in mature neurons, exposing primary neuronal cells to ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Besides CNTF, which is known to recruit Stat3, we found that Stat3 was also tyrosine phosphorylated by bFGF. These data are indicative of an important role of Stat3 and Stat1 in regulating the physiological status of mature neurons.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione