Neural stem cell (NSCs) are self-renewing, multipotent cells able to generate neurons, astrocytes and oligodendrocytes. Since their identification, these properties have made NSCs an attractive subject for therapeutic applications to the damaged brain. In this context, understanding the mechanisms and the molecules regulating their biological properties is important and it is focused to gain control over their proliferative and differentiative potential. Here we will discuss values and unsolved aspects of the system and the employment of potentially key molecular targets for proper control of NSCs fate.

Neural stem and progenitor cells: choosing the right Shc.

Conti, Luciano;
2004

Abstract

Neural stem cell (NSCs) are self-renewing, multipotent cells able to generate neurons, astrocytes and oligodendrocytes. Since their identification, these properties have made NSCs an attractive subject for therapeutic applications to the damaged brain. In this context, understanding the mechanisms and the molecules regulating their biological properties is important and it is focused to gain control over their proliferative and differentiative potential. Here we will discuss values and unsolved aspects of the system and the employment of potentially key molecular targets for proper control of NSCs fate.
1
Cataudella, T; Conti, Luciano; Cattaneo, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/99144
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact