The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity map directly gives the electric field distribution, to which the electric dipole of the QD is coupled. The magnetic field generates, via Faraday's law, a circular current in the apex of the metallized probe that can be schematized as a ring. The resulting magnetic perturbation of the photonic modes induces a blue shift, which can be used to map the magnetic field, within a single near-field scan.

Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

Riboli, Francesco;
2012-01-01

Abstract

The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity map directly gives the electric field distribution, to which the electric dipole of the QD is coupled. The magnetic field generates, via Faraday's law, a circular current in the apex of the metallized probe that can be schematized as a ring. The resulting magnetic perturbation of the photonic modes induces a blue shift, which can be used to map the magnetic field, within a single near-field scan.
2012
Silvia, Vignolini; Francesca, Intonti; Riboli, Francesco; Diederik Sybolt, Wiersma; Laurent, Balet; Lianhe H., Li; Marco, Francardi; Annamaria, Gerard...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/98534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact