A local tuning of the modes of photonic crystal systems both to blue and to red sides of the resonance is implemented by nano-infiltration/evaporation of water and laser micro-oxidation. This technology is used to completely control coupled photonic nanocavities (photonic crystal molecules). Beside the standard condition of zero detuning between identical modes of the two cavities (homoatomic molecule), we are also able to produce coupling between two modes of different polarization and spatial distribution (heteroatomic molecule).

Ideal homoatomic and heteroatomic photonic crystal molecules

Riboli, Francesco;
2012-01-01

Abstract

A local tuning of the modes of photonic crystal systems both to blue and to red sides of the resonance is implemented by nano-infiltration/evaporation of water and laser micro-oxidation. This technology is used to completely control coupled photonic nanocavities (photonic crystal molecules). Beside the standard condition of zero detuning between identical modes of the two cavities (homoatomic molecule), we are also able to produce coupling between two modes of different polarization and spatial distribution (heteroatomic molecule).
2012
Silvia, Vignolini; Francesca, Intonti; Riboli, Francesco; Diederik Sybolt, Wiersma; Laurent, Balet; Lianhe H., Li; Marco, Francardi; Annamaria, Gerard...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/98533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact