The new generation of satellite hyperspectral (HS) sensors can acquire very detailed spectral information directly related to land surface materials. Thus, when multitemporal images are considered, they allow us to detect many potential changes in land covers. This paper addresses the change-detection (CD) problem in multitemporal HS remote sensing images, analyzing the complexity of this task. A novel hierarchical CD approach is proposed, which is aimed at identifying all the possible change classes present between the considered images. In greater detail, in order to formalize the CD problem in HS images, an analysis of the concept of "change" is given from the perspective of pixel spectral behaviors. The proposed novel hierarchical scheme is developed by considering spectral change information to identify the change classes having discriminable spectral behaviors. Due to the fact that, in real applications, reference samples are often not available, the proposed approach is designed...
Hierarchical Unsupervised Change Detection in Multitemporal Hyperspectral Images
Sicong Liu;Lorenzo Bruzzone;Francesca Bovolo;
2015-01-01
Abstract
The new generation of satellite hyperspectral (HS) sensors can acquire very detailed spectral information directly related to land surface materials. Thus, when multitemporal images are considered, they allow us to detect many potential changes in land covers. This paper addresses the change-detection (CD) problem in multitemporal HS remote sensing images, analyzing the complexity of this task. A novel hierarchical CD approach is proposed, which is aimed at identifying all the possible change classes present between the considered images. In greater detail, in order to formalize the CD problem in HS images, an analysis of the concept of "change" is given from the perspective of pixel spectral behaviors. The proposed novel hierarchical scheme is developed by considering spectral change information to identify the change classes having discriminable spectral behaviors. Due to the fact that, in real applications, reference samples are often not available, the proposed approach is designed...| File | Dimensione | Formato | |
|---|---|---|---|
|
Hierarchical_Unsupervised_Change_Detection_in_Multitemporal_Hyperspectral_Images.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.73 MB
Formato
Adobe PDF
|
2.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



