This paper aims at analyzing and comparing active learning (AL) and semisupervised learning (SSL) methods for the classification of remote sensing (RS) images. We present a literature review of the two learning paradigms and compare them theoretically and experimentally when addressing classification problems characterized by few training samples (w.r.t. the number of features) and affected by sample selection bias. Commonalities and differences are highlighted in the context of a conceptual framework used to describe the workflow of the two approaches. We point out advantages and disadvantages of the two approaches, delineating the boundary conditions on the applicability of the two paradigms with respect to both the amount and the quality of available training samples. Moreover, we investigate the integration of concepts that are in common between the two learning paradigms for improving state-of-the-art techniques and combining AL and SSL in order to jointly leverage the advantages ...
Active and Semi-Supervised Learning for the Classification of Remote Sensing Images
Bruzzone, Lorenzo
2014-01-01
Abstract
This paper aims at analyzing and comparing active learning (AL) and semisupervised learning (SSL) methods for the classification of remote sensing (RS) images. We present a literature review of the two learning paradigms and compare them theoretically and experimentally when addressing classification problems characterized by few training samples (w.r.t. the number of features) and affected by sample selection bias. Commonalities and differences are highlighted in the context of a conceptual framework used to describe the workflow of the two approaches. We point out advantages and disadvantages of the two approaches, delineating the boundary conditions on the applicability of the two paradigms with respect to both the amount and the quality of available training samples. Moreover, we investigate the integration of concepts that are in common between the two learning paradigms for improving state-of-the-art techniques and combining AL and SSL in order to jointly leverage the advantages ...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



