We prove congruences, modulo a power of a prime $p$, for certain finite sums involving central binomial coefficients $\binom{2k}{k}$, partly motivated by analogies with the well-known power series for $(\arcsin z)^2$ and $(\arcsin z)^4$. The right-hand sides of those congruences involve values of the finite polylogarithms $\pounds_d(x)=\sum_{k=1}^{p-1} x^k/k^d$. Exploiting the available functional equations for the latter we compute those values, modulo the required powers of $p$, in terms of familiar quantities such as Fermat quotients and Bernoulli numbers.

Congruences for central binomial sums and finite polylogarithms

Mattarei, Sandro
2013

Abstract

We prove congruences, modulo a power of a prime $p$, for certain finite sums involving central binomial coefficients $\binom{2k}{k}$, partly motivated by analogies with the well-known power series for $(\arcsin z)^2$ and $(\arcsin z)^4$. The right-hand sides of those congruences involve values of the finite polylogarithms $\pounds_d(x)=\sum_{k=1}^{p-1} x^k/k^d$. Exploiting the available functional equations for the latter we compute those values, modulo the required powers of $p$, in terms of familiar quantities such as Fermat quotients and Bernoulli numbers.
R., Tauraso; Mattarei, Sandro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/97932
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact