The estimation of the directions of arrival (DoAs) of narrow-band signals impinging on a linear antenna array is addressed within the Bayesian compressive sensing (BCS) framework. Unlike several state-of-the-art approaches, the voltages at the output of the receiving sensors are directly used to determine the DoAs of the signals thus avoiding the computation of the correlation matrix. Towards this end, the estimation problem is properly formulated to enforce the sparsity of the solution in the linear relationships between output voltages (i.e., the problem data) and the unknown DoAs. Customized implementations exploiting the measurements collected at a unique time instant (single-snapshot) and multiple time instants (multiple-snapshots) are presented and discussed. The effectiveness of the proposed approaches is assessed through an extensive numerical analysis addressing different scenarios, signal configurations, and noise conditions. Comparisons with state-of-the-art methods are reported, as well
Directions-of-Arrival Estimation through Bayesian Compressive Sensing Strategies / Carlin, Matteo; Rocca, Paolo; Oliveri, Giacomo; Viani, Federico; Massa, Andrea. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - 61:7(2013), pp. 3828-3838. [10.1109/TAP.2013.2256093]
Directions-of-Arrival Estimation through Bayesian Compressive Sensing Strategies
Carlin, Matteo;Rocca, Paolo;Oliveri, Giacomo;Viani, Federico;Massa, Andrea
2013-01-01
Abstract
The estimation of the directions of arrival (DoAs) of narrow-band signals impinging on a linear antenna array is addressed within the Bayesian compressive sensing (BCS) framework. Unlike several state-of-the-art approaches, the voltages at the output of the receiving sensors are directly used to determine the DoAs of the signals thus avoiding the computation of the correlation matrix. Towards this end, the estimation problem is properly formulated to enforce the sparsity of the solution in the linear relationships between output voltages (i.e., the problem data) and the unknown DoAs. Customized implementations exploiting the measurements collected at a unique time instant (single-snapshot) and multiple time instants (multiple-snapshots) are presented and discussed. The effectiveness of the proposed approaches is assessed through an extensive numerical analysis addressing different scenarios, signal configurations, and noise conditions. Comparisons with state-of-the-art methods are reported, as wellFile | Dimensione | Formato | |
---|---|---|---|
Directions-of-arrival estimation through bayesian compressive sensing strategies.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione