The availability of multichannel neuroimaging techniques, such as MEG and EEG, provides us with detailed topographical information of the recorded magnetic and electric signals and therefore gives us a good overview on the concomitant signals generated in the brain. To assess the location and the temporal dynamics of neuronal sources with noninvasive recordings, reconstruction tools such as beamformers have been shown to be useful. In the current study, we are in particular interested in cortical motor control involved in the isometric contraction of finger muscles. To this end we are measuring the interaction between the dynamics of brain signals and the electrical activity of handmuscles.We were interested to find out whether in addition to the well-known correlated activity between contralateral primary motor cortex and the hand muscles, additional functional connections can be demonstrated. We adopted coherence as a functional index and propose a so-called nulling beamformer method which is computationally efficient and addresses the localization of multiple correlated sources. In simulations of corticomotor coherence, the proposed method was able to correctly localize secondary sources. The application of the approach on real electromyographic and magnetoencephalographic data collected during an isometric contraction and rest revealed an additional activity in the hemisphere ipsilateral to the hand involved in the task.
Enhancing the signal of corticomuscular coherence.
Braun, Heinrich Christoph
2012-01-01
Abstract
The availability of multichannel neuroimaging techniques, such as MEG and EEG, provides us with detailed topographical information of the recorded magnetic and electric signals and therefore gives us a good overview on the concomitant signals generated in the brain. To assess the location and the temporal dynamics of neuronal sources with noninvasive recordings, reconstruction tools such as beamformers have been shown to be useful. In the current study, we are in particular interested in cortical motor control involved in the isometric contraction of finger muscles. To this end we are measuring the interaction between the dynamics of brain signals and the electrical activity of handmuscles.We were interested to find out whether in addition to the well-known correlated activity between contralateral primary motor cortex and the hand muscles, additional functional connections can be demonstrated. We adopted coherence as a functional index and propose a so-called nulling beamformer method which is computationally efficient and addresses the localization of multiple correlated sources. In simulations of corticomotor coherence, the proposed method was able to correctly localize secondary sources. The application of the approach on real electromyographic and magnetoencephalographic data collected during an isometric contraction and rest revealed an additional activity in the hemisphere ipsilateral to the hand involved in the task.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione