Strain, as an easy and clearly defined concept in continuum mechanics, has no direct counterpart in atomistic models. Existing methods, relying on the concept of atomic coordination number, do not provide a complete description of volumetric and deviatoric strains across metallic nanocrystalline microstructures. To overcome those limitations a new method is proposed: the Voronoi Cell deformation (VCD) fully accounts for the local geometry and provides a description of the strain field independent of the atomic coordination. As a typical case of study, a large atomic cluster of 200 Al grains (ca 2 million atoms) and overall size of 33 cubic nanometres was considered.

Strain in Atomistic Models of Nanocrystalline Clusters

Leonardi, Alberto;Leoni, Matteo;Scardi, Paolo
2012-01-01

Abstract

Strain, as an easy and clearly defined concept in continuum mechanics, has no direct counterpart in atomistic models. Existing methods, relying on the concept of atomic coordination number, do not provide a complete description of volumetric and deviatoric strains across metallic nanocrystalline microstructures. To overcome those limitations a new method is proposed: the Voronoi Cell deformation (VCD) fully accounts for the local geometry and provides a description of the strain field independent of the atomic coordination. As a typical case of study, a large atomic cluster of 200 Al grains (ca 2 million atoms) and overall size of 33 cubic nanometres was considered.
2012
Leonardi, Alberto; Leoni, Matteo; M., Li; Scardi, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/96505
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact