In congenitally blind individuals, many regions of the brain that are typically heavily involved in visual processing are recruited for a variety of nonvisual sensory and cognitive tasks (Rauschecker 1995; Pascual-Leone et al. 2005). This phenomenon—cross-modal plasticity—has been widely documented, but the principles that determine where and how cross-modal changes occur remain poorly understood (Bavelier and Neville 2002). Here, we evaluate the hypothesis that cross-modal plasticity respects the type of computations performed by a region, even as it changes the modality of the inputs over which they are carried out (Pascual-Leone and Hamilton 2001). We compared the fMRI signal in sighted and congenitally blind participants during proprioceptively guided reaching. We show that parietooccipital reach-related regions retain their functional role—encoding of the spatial position of the reach target—even as the dominant modality in this region changes from visual to nonvisual inputs. This suggests that the computational role of a region, independently of the processing modality, codetermines its potential cross-modal recruitment. Our findings demonstrate that preservation of functional properties can serve as a guiding principle for cross-modal plasticity even in visuomotor cortical regions, i.e. beyond the early visual cortex and other traditional visual areas.

Cross-modal plasticity preserves functional specialization in posterior parietal cortex

Lingnau, Angelika;Strnad, Lukas;Fabbri, Sara;Caramazza, Alfonso
2014-01-01

Abstract

In congenitally blind individuals, many regions of the brain that are typically heavily involved in visual processing are recruited for a variety of nonvisual sensory and cognitive tasks (Rauschecker 1995; Pascual-Leone et al. 2005). This phenomenon—cross-modal plasticity—has been widely documented, but the principles that determine where and how cross-modal changes occur remain poorly understood (Bavelier and Neville 2002). Here, we evaluate the hypothesis that cross-modal plasticity respects the type of computations performed by a region, even as it changes the modality of the inputs over which they are carried out (Pascual-Leone and Hamilton 2001). We compared the fMRI signal in sighted and congenitally blind participants during proprioceptively guided reaching. We show that parietooccipital reach-related regions retain their functional role—encoding of the spatial position of the reach target—even as the dominant modality in this region changes from visual to nonvisual inputs. This suggests that the computational role of a region, independently of the processing modality, codetermines its potential cross-modal recruitment. Our findings demonstrate that preservation of functional properties can serve as a guiding principle for cross-modal plasticity even in visuomotor cortical regions, i.e. beyond the early visual cortex and other traditional visual areas.
2014
Lingnau, Angelika; Strnad, Lukas; He, C.; Fabbri, Sara; Han, Z.; Bi, Y.; Caramazza, Alfonso
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/96304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 21
  • OpenAlex ND
social impact