For any irreducible non-degenerate variety X ⊂ P r , we give a criterion for the ( k , s ) -identifiability of X. If k s − 1 < r, then the ( k , s ) - identifiability holds for X if and only if the s-identifiability holds for the Segre product Seg (P k × X ) . Moreover, if the s-th secant variety of X is not defective and it does not fill the ambient space, then we can produce a family of pairs ( k , s ) for which the ( k , s ) -identifiability holds for X. © 2012 Elsevier Inc. All rights reserved.
Grassmann secants, identifiability, and linear systems of tensors / Ballico, Edoardo; Bernardi, Alessandra; Catalisano, Maria Virginia; Chiantini, Luca. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - STAMPA. - 438:1(2013), pp. 121-135. [10.1090/S0002-9939-2012-11191-8]
Grassmann secants, identifiability, and linear systems of tensors
Ballico, Edoardo;Bernardi, Alessandra;
2013-01-01
Abstract
For any irreducible non-degenerate variety X ⊂ P r , we give a criterion for the ( k , s ) -identifiability of X. If k s − 1 < r, then the ( k , s ) - identifiability holds for X if and only if the s-identifiability holds for the Segre product Seg (P k × X ) . Moreover, if the s-th secant variety of X is not defective and it does not fill the ambient space, then we can produce a family of pairs ( k , s ) for which the ( k , s ) -identifiability holds for X. © 2012 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
LAA11833.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
459.26 kB
Formato
Adobe PDF
|
459.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione