In the first section we collect some unpublished results presented in [17], related to linearizations and normalizations of planar centers. In the second section we consider both the problem of finding isochrones of isochronous systems (centers or not) and its inverse, i. e. given a family of curves filling an open set, how to construct a system having such curves as isochrones. In particular, we show that for every family of curves y = m x + d(x) there exists a Liénard system having such curves as isochrones.

Linearizations, normalizations and isochrones of planar differential systems

Sabatini, Marco
2012-01-01

Abstract

In the first section we collect some unpublished results presented in [17], related to linearizations and normalizations of planar centers. In the second section we consider both the problem of finding isochrones of isochronous systems (centers or not) and its inverse, i. e. given a family of curves filling an open set, how to construct a system having such curves as isochrones. In particular, we show that for every family of curves y = m x + d(x) there exists a Liénard system having such curves as isochrones.
2012
Sabatini, Marco
File in questo prodotto:
File Dimensione Formato  
100.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 308.75 kB
Formato Adobe PDF
308.75 kB Adobe PDF   Visualizza/Apri
Sabatini-LNI-revised.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 298.6 kB
Formato Adobe PDF
298.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/95222
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact