We classify the subgroups of the automorphism group of the product of 4 projective lines admitting an invariant anticanonical smooth divisor on which the action is free. As a first application, we describe new examples of Calabi--Yau 3-folds with small Hodge numbers. In particular, the Picard number is 1 and the number of moduli is 5. Furthermore, the fundamental group is non-trivial. We also construct a new family of minimal surfaces of general type with geometric genus zero, K^2=3 and fundamental group of order 16. We show that this family dominates an irreducible component of dimension 4 of the moduli space of the surfaces of general type.

New examples of Calabi--Yau threefolds and genus zero surfaces / Gilberto, Bini; Filippo F., Favale; Jorge, Neves; Pignatelli, Roberto. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 16:2(2014). [10.1142/S0219199713500107]

New examples of Calabi--Yau threefolds and genus zero surfaces

Pignatelli, Roberto
2014-01-01

Abstract

We classify the subgroups of the automorphism group of the product of 4 projective lines admitting an invariant anticanonical smooth divisor on which the action is free. As a first application, we describe new examples of Calabi--Yau 3-folds with small Hodge numbers. In particular, the Picard number is 1 and the number of moduli is 5. Furthermore, the fundamental group is non-trivial. We also construct a new family of minimal surfaces of general type with geometric genus zero, K^2=3 and fundamental group of order 16. We show that this family dominates an irreducible component of dimension 4 of the moduli space of the surfaces of general type.
2014
2
Gilberto, Bini; Filippo F., Favale; Jorge, Neves; Pignatelli, Roberto
New examples of Calabi--Yau threefolds and genus zero surfaces / Gilberto, Bini; Filippo F., Favale; Jorge, Neves; Pignatelli, Roberto. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 16:2(2014). [10.1142/S0219199713500107]
File in questo prodotto:
File Dimensione Formato  
Published.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 348.64 kB
Formato Adobe PDF
348.64 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/94931
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact