We report on the mechanical losses measured in a "low-deformation mirror" micro-oscillator designed to reduce as much as possible the strain in the coating layer and the resulting energy dissipation. The deposition of the highly reflective coating layer has been fully integrated in the micro-machining process. We measured at cryogenic temperature a mechanical quality factor up to 10(5) and an optical finesse of about 4 x 10(4), and simulations show that the device can manage input powers of a few mW at 4.2 K. These features make the device very promising for quantum optics experiments. (C) 2012 American Institute of Physics.

A "low-deformation mirror" micro-oscillator with ultra-low optical and mechanical losses

Serra, Enrico;Pontin, Antonio;Prodi, Giovanni Andrea;
2012-01-01

Abstract

We report on the mechanical losses measured in a "low-deformation mirror" micro-oscillator designed to reduce as much as possible the strain in the coating layer and the resulting energy dissipation. The deposition of the highly reflective coating layer has been fully integrated in the micro-machining process. We measured at cryogenic temperature a mechanical quality factor up to 10(5) and an optical finesse of about 4 x 10(4), and simulations show that the device can manage input powers of a few mW at 4.2 K. These features make the device very promising for quantum optics experiments. (C) 2012 American Institute of Physics.
2012
Serra, Enrico; A., Borrielli; F. S., Cataliotti; F., Marin; F., Marino; Pontin, Antonio; Prodi, Giovanni Andrea; M., Bonaldi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/94732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact