This work presents a light-weight microwave system for the search and rescue of victims trapped under the rubble of collapsed building during an earthquake or other disasters. The proposed system based on a continuous wave X-band radar is able to detect respiratory and heart fluctuations: the information is extracted from the backscattered electromagnetic field exploiting independent component analysis (ICA) algorithm which provides an efficient noise and clutter cleaning. The proposed rescue radar is compact enough to be mounted onboard of a small unmanned aerial vehicle (UAV) in order to reach inaccessible or dangerous areas. The obtained experimental results show that the proposed detection method is able to successfully locate trapped victims with a reasonable degree of accuracy.
A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm
Donelli, Massimo
2011-01-01
Abstract
This work presents a light-weight microwave system for the search and rescue of victims trapped under the rubble of collapsed building during an earthquake or other disasters. The proposed system based on a continuous wave X-band radar is able to detect respiratory and heart fluctuations: the information is extracted from the backscattered electromagnetic field exploiting independent component analysis (ICA) algorithm which provides an efficient noise and clutter cleaning. The proposed rescue radar is compact enough to be mounted onboard of a small unmanned aerial vehicle (UAV) in order to reach inaccessible or dangerous areas. The obtained experimental results show that the proposed detection method is able to successfully locate trapped victims with a reasonable degree of accuracy.File | Dimensione | Formato | |
---|---|---|---|
A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
208.19 kB
Formato
Adobe PDF
|
208.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione