Most artworks are explicitly created to evoke a strong emotional response. During the centuries there were several art movements which employed different techniques to achieve emotional expressions conveyed by artworks. Yet people were always consistently able to read the emotional messages even from the most abstract paintings. Can a machine learn what makes an artwork emotional? In this work, we consider a set of 500 abstract paintings from Museum of Modern and Contemporary Art of Trento and Rovereto (MART), where each painting was scored as carrying a positive or negative response on a Likert scale of 1-7. We employ a state-of-the-art recognition system to learn which statistical patterns are associated with positive and negative emotions. Additionally, we dissect the classification machinery to determine which parts of an image evokes what emotions. This opens new opportunities to research why a specific painting is perceived as emotional. We also demonstrate how quantification of ...
In the eye of the beholder: Employing statistical analysis and eye tracking for analyzing abstract paintings
Yanulevskaya, Victoria;Uijlings, Jasper Reinout Robertus;Bruni, Elia;Sartori, Andreza;Bacci, Francesca;Melcher, David Paul;Sebe, Niculae
2012-01-01
Abstract
Most artworks are explicitly created to evoke a strong emotional response. During the centuries there were several art movements which employed different techniques to achieve emotional expressions conveyed by artworks. Yet people were always consistently able to read the emotional messages even from the most abstract paintings. Can a machine learn what makes an artwork emotional? In this work, we consider a set of 500 abstract paintings from Museum of Modern and Contemporary Art of Trento and Rovereto (MART), where each painting was scored as carrying a positive or negative response on a Likert scale of 1-7. We employ a state-of-the-art recognition system to learn which statistical patterns are associated with positive and negative emotions. Additionally, we dissect the classification machinery to determine which parts of an image evokes what emotions. This opens new opportunities to research why a specific painting is perceived as emotional. We also demonstrate how quantification of ...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



