Inclusion of soot in lubricating oil can result in increased wear and decreased lubricity. In this study we have attempted to gain fundamental insight into the morphology, structure and chemistry of diesel soot. Energy dispersive spectroscopy using TEM suggests interaction between lubrication additives and crankcase soot resulting in the presence of C, Ca, S, P, O and Zn. Synchrotron X-ray diffraction indicates the presence of different sulfates of calcium as well as the presence of amorphous zinc based compounds. Raman spectroscopy and selected area diffraction using TEM indicates that the turbostratic structures of the carbon in both are very similar.
Morphology, structure and chemistry of extracted diesel soot—Part I: Transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and synchrotron X-ray diffraction study
Azanza Ricardo, Cristy Leonor;Scardi, Paolo;
2012-01-01
Abstract
Inclusion of soot in lubricating oil can result in increased wear and decreased lubricity. In this study we have attempted to gain fundamental insight into the morphology, structure and chemistry of diesel soot. Energy dispersive spectroscopy using TEM suggests interaction between lubrication additives and crankcase soot resulting in the presence of C, Ca, S, P, O and Zn. Synchrotron X-ray diffraction indicates the presence of different sulfates of calcium as well as the presence of amorphous zinc based compounds. Raman spectroscopy and selected area diffraction using TEM indicates that the turbostratic structures of the carbon in both are very similar.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione