A new algorithm for the computation of the coefficients of the heat kernel expansion, associated with a second-order non-negative elliptic-symmetric differential operator, defined on an N-dimensional compact riemannian manifold with boundary is presented. Some coefficients are explicitly derived. Using zeta function regularization, an explicit form for the expectation value of the matter stress tensor is given. Corrections to a class of anomalies, due to the presence of the boundary, are found.

A new algorithm for asymptotic heat kernel expansion for manifolds with boundary

Cognola, Guido;Vanzo, Luciano;Zerbini, Sergio
1990-01-01

Abstract

A new algorithm for the computation of the coefficients of the heat kernel expansion, associated with a second-order non-negative elliptic-symmetric differential operator, defined on an N-dimensional compact riemannian manifold with boundary is presented. Some coefficients are explicitly derived. Using zeta function regularization, an explicit form for the expectation value of the matter stress tensor is given. Corrections to a class of anomalies, due to the presence of the boundary, are found.
Cognola, Guido; Vanzo, Luciano; Zerbini, Sergio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/92349
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact