We introduce a family of Cauchy integral formulas for slice and slice regular functions on a real associative *-algebra. For each suitable choice of a real vector subspace of the algebra, a different formula is given, in which the domains of integration are subsets of the subspace. In particular, in the quaternionic case, we get a volume Cauchy formula. In the Clifford algebra case, the choice of the paravector subspace R^{n+1} gives a volume Cauchy formula for slice monogenic functions.
Volume Cauchy formulas for slice functions on real associative *-algebras
Ghiloni, RiccardoPrimo
;Perotti, Alessandro
Ultimo
2013-01-01
Abstract
We introduce a family of Cauchy integral formulas for slice and slice regular functions on a real associative *-algebra. For each suitable choice of a real vector subspace of the algebra, a different formula is given, in which the domains of integration are subsets of the subspace. In particular, in the quaternionic case, we get a volume Cauchy formula. In the Clifford algebra case, the choice of the paravector subspace R^{n+1} gives a volume Cauchy formula for slice monogenic functions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
COV_2013_Volume.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
237.83 kB
Formato
Adobe PDF
|
237.83 kB | Adobe PDF | Visualizza/Apri |
volume-cauchy-ghiloni-perotti-arXiv.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
299.26 kB
Formato
Adobe PDF
|
299.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione