We consider a parabolic Volterra integro-differential equation in Hilbert space with a completely monotone convolution kernel and a sectorial operator. Utilizing a state space setting, we show that for a large class of kernels the state cannot be controlled exactly to zero. On the other hand, equations of our type are always approximately controllable, provided the control operator has dense range

Controllability of a class of Volterra equations in Hilbert spaces with completely monotone kernel

Bonaccorsi, Stefano;
2012

Abstract

We consider a parabolic Volterra integro-differential equation in Hilbert space with a completely monotone convolution kernel and a sectorial operator. Utilizing a state space setting, we show that for a large class of kernels the state cannot be controlled exactly to zero. On the other hand, equations of our type are always approximately controllable, provided the control operator has dense range
3
Bonaccorsi, Stefano; G., Desch
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/91732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact