This paper proposes a novel change-detection-driven transfer learning (TL) approach to update land-cover maps by classifying remote-sensing images acquired on the same area at different times (i.e., image time series). The proposed approach requires that a reliable training set is available only for one of the images (i.e., the source domain) in the time series whereas it is not for another image to be classified (i.e., the target domain). Unlike other literature TL methods, no additional assumptions on either the similarity between class distributions or the presence of the same set of land-cover classes in the two domains are required. The proposed method aims at defining a reliable training set for the target domain, taking advantage of the already available knowledge on the source domain. This is done by applying an unsupervised-change-detection method to target and source domains and transferring class labels of detected unchanged training samples from the source to the target dom...
Updating Land-Cover Maps by Classification of Image Time Series: A Novel Change-Detection-Driven Transfer Learning Approach
Demir, Begum;Bovolo, Francesca;Bruzzone, Lorenzo
2013-01-01
Abstract
This paper proposes a novel change-detection-driven transfer learning (TL) approach to update land-cover maps by classifying remote-sensing images acquired on the same area at different times (i.e., image time series). The proposed approach requires that a reliable training set is available only for one of the images (i.e., the source domain) in the time series whereas it is not for another image to be classified (i.e., the target domain). Unlike other literature TL methods, no additional assumptions on either the similarity between class distributions or the presence of the same set of land-cover classes in the two domains are required. The proposed method aims at defining a reliable training set for the target domain, taking advantage of the already available knowledge on the source domain. This is done by applying an unsupervised-change-detection method to target and source domains and transferring class labels of detected unchanged training samples from the source to the target dom...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



