We will consider the relationship of the topology of (normalizations of) divisors inside complex manifolds with holomorphic gerbes and meromorphic line bundles on these manifolds. If the normalization of the divisor has non-zero first Betti number then the manifold has either (1) a non-trivial holomorphic gerbe which does not trivialize meromorphically or (2) a meromorphic line bundle not equivalent to any holomorphic line bundle. Similarly, higher Betti numbers of divisors correspond to higher gerbes or meromorphic gerbes. We give several new examples.

Meromorphic line bundles and holomorphic gerbes

Ballico, Edoardo;
2011-01-01

Abstract

We will consider the relationship of the topology of (normalizations of) divisors inside complex manifolds with holomorphic gerbes and meromorphic line bundles on these manifolds. If the normalization of the divisor has non-zero first Betti number then the manifold has either (1) a non-trivial holomorphic gerbe which does not trivialize meromorphically or (2) a meromorphic line bundle not equivalent to any holomorphic line bundle. Similarly, higher Betti numbers of divisors correspond to higher gerbes or meromorphic gerbes. We give several new examples.
2011
6
Ballico, Edoardo; O., Ben Bassat
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/91389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact