We present the results of a search for gravitational-wave bursts (GWBs) associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for GWB signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with a median limit of D similar to 12 Mpc(E(GW)(iso)/0.01 M(circle dot)c(2))(1/2) for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs.
Search For Gravitational-wave Bursts Associated With Gamma-ray Bursts Using Data From Ligo Science Run 5 and Virgo Science Run 1
Antonucci, Federica;Drago, Marco;Prodi, Giovanni Andrea;Perreca, Antonio;
2010-01-01
Abstract
We present the results of a search for gravitational-wave bursts (GWBs) associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for GWB signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with a median limit of D similar to 12 Mpc(E(GW)(iso)/0.01 M(circle dot)c(2))(1/2) for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione