Silicon photonics meets the electronics requirement of increased speed and bandwidth with on-chip optical networks. All-optical data management requires nonlinear silicon photonics. In silicon only third-order optical nonlinearities are present owing to its crystalline inversion symmetry. Introducing a second-order nonlinearity into silicon photonics by proper material engineering would be highly desirable. It would enable devices for wideband wavelength conversion operating at relatively low optical powers. Here we show that a sizeable second-order nonlinearity at optical wavelengths is induced in a silicon waveguide by using a stressing silicon nitride overlayer. We carried out second-harmonic-generation experiments and first-principle calculations, which both yield large values of strain-induced bulk second-order nonlinear susceptibility, up to 40pmV1 at 2,300 nm. We envisage that nonlinear strained silicon could provide a competing platform for a new class of integrated light sources spanning the near- to mid-infrared spectrum from 1.2 to 10 um.

Second harmonic generation in silicon waveguides strained by silicon nitride

Cazzanelli, Massimo;Bianco, Federica;Pavesi, Lorenzo
2012-01-01

Abstract

Silicon photonics meets the electronics requirement of increased speed and bandwidth with on-chip optical networks. All-optical data management requires nonlinear silicon photonics. In silicon only third-order optical nonlinearities are present owing to its crystalline inversion symmetry. Introducing a second-order nonlinearity into silicon photonics by proper material engineering would be highly desirable. It would enable devices for wideband wavelength conversion operating at relatively low optical powers. Here we show that a sizeable second-order nonlinearity at optical wavelengths is induced in a silicon waveguide by using a stressing silicon nitride overlayer. We carried out second-harmonic-generation experiments and first-principle calculations, which both yield large values of strain-induced bulk second-order nonlinear susceptibility, up to 40pmV1 at 2,300 nm. We envisage that nonlinear strained silicon could provide a competing platform for a new class of integrated light sources spanning the near- to mid-infrared spectrum from 1.2 to 10 um.
2012
Cazzanelli, Massimo; Bianco, Federica; E., Borga; G., Pucker; M., Ghulinyan; E., Degoli; E., Luppi; V., Véniard; S., Ossicini; D., Modotto; S., Wabnitz; R., Pierobon; Pavesi, Lorenzo
File in questo prodotto:
File Dimensione Formato  
2012 Nature Materials.pdf

Solo gestori archivio

Descrizione: articolo principale
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 545.24 kB
Formato Adobe PDF
545.24 kB Adobe PDF   Visualizza/Apri
2012 Nat Mat suppl.pdf

Solo gestori archivio

Descrizione: supplementary materials
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/90698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 286
  • ???jsp.display-item.citation.isi??? 263
social impact