We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower bound in terms of the Blake and Zisserman energy. We prove a sharp bound by exhibiting the discrete-to-continuous Γ-limit for a special class of functions, showing the appearance new ‘shear’ terms in the energy, which are a genuinely two-dimensional effect.

A compactness result for a second-order variational discrete model

Defranceschi, Anneliese;
2012-01-01

Abstract

We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower bound in terms of the Blake and Zisserman energy. We prove a sharp bound by exhibiting the discrete-to-continuous Γ-limit for a special class of functions, showing the appearance new ‘shear’ terms in the energy, which are a genuinely two-dimensional effect.
2012
2
A., Braides; Defranceschi, Anneliese; E., Vitali
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/89958
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact