In this paper, a new approach based on the Bayesian compressive sampling (BCS ) and within the contrast source formulation of an inverse scattering problem is proposed for imaging sparse scatterers. By enforcing a probabilistic hierarchical prior as a sparsity regularization constraint, the problem is solved by means of a fast relevance vector machine. The effectiveness and robustness of the BCS-based approach are assessed through a set of numerical experiments concerned with various scatterer configurations and different noisy conditions.
A bayesian compressive sampling-based inversion for imaging sparse scatterers
Oliveri, Giacomo;Rocca, Paolo;Massa, Andrea
2011-01-01
Abstract
In this paper, a new approach based on the Bayesian compressive sampling (BCS ) and within the contrast source formulation of an inverse scattering problem is proposed for imaging sparse scatterers. By enforcing a probabilistic hierarchical prior as a sparsity regularization constraint, the problem is solved by means of a fast relevance vector machine. The effectiveness and robustness of the BCS-based approach are assessed through a set of numerical experiments concerned with various scatterer configurations and different noisy conditions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A bayesian compressive sampling-based inversion for imaging sparse scatterers.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione