The process through which disordered components spontaneously arrange themselves into patterns is called self-assembly. Molecular self-assembly describes the process by which molecules adopt a defined arrangement without external guidance (e.g. formation of membranes and protein complexes). These biological processes are essential to the functioning of cells. We investigate the usage of BlenX, a process calculi based programming language, for modelling molecular self-assembly of filaments, trees and rings. Moreover, we show how these structures can be used to model actin polymerization.
Modelling self-assembly in BlenX
Larcher, Roberto;Priami, Corrado;Romanel, Alessandro
2010-01-01
Abstract
The process through which disordered components spontaneously arrange themselves into patterns is called self-assembly. Molecular self-assembly describes the process by which molecules adopt a defined arrangement without external guidance (e.g. formation of membranes and protein complexes). These biological processes are essential to the functioning of cells. We investigate the usage of BlenX, a process calculi based programming language, for modelling molecular self-assembly of filaments, trees and rings. Moreover, we show how these structures can be used to model actin polymerization.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione