The transition from non-living to living matter may have resulted from the self-organizing properties of organic molecules and their interactions with a chemically rich inorganic environment. We have shown that a solution containing RNA, fatty acids and clay produces structures that contain a potentially catalytic surface (clay) and a potential informational biopolymer (RNA) encapsulated within a membrane. This highlights the ability of mineral surfaces to bring together and organize key components of primordial life. We have extended our analysis of mineral-mediated vesicle catalysis to include other natural minerals and synthetic surfaces of varying shape, size, and charge density. Our results show that while RNA polymerization on minerals may be restricted to the surface environment provided by montmorillonite, vesicle formation is enhanced in the presence of disparate types of surfaces. A model is presented in which new sheets of amphiphiles form just proximal to a surface. Similar interactions between amphiphiles and minerals on early Earth may have resulted in the encapsulation of a diverse array of mineral particulates with catalytic properties.

Mineral surface directed membrane assembly.

Hanczyc, Martin Michael;Mansy, Sheref Samir;
2007-01-01

Abstract

The transition from non-living to living matter may have resulted from the self-organizing properties of organic molecules and their interactions with a chemically rich inorganic environment. We have shown that a solution containing RNA, fatty acids and clay produces structures that contain a potentially catalytic surface (clay) and a potential informational biopolymer (RNA) encapsulated within a membrane. This highlights the ability of mineral surfaces to bring together and organize key components of primordial life. We have extended our analysis of mineral-mediated vesicle catalysis to include other natural minerals and synthetic surfaces of varying shape, size, and charge density. Our results show that while RNA polymerization on minerals may be restricted to the surface environment provided by montmorillonite, vesicle formation is enhanced in the presence of disparate types of surfaces. A model is presented in which new sheets of amphiphiles form just proximal to a surface. Similar interactions between amphiphiles and minerals on early Earth may have resulted in the encapsulation of a diverse array of mineral particulates with catalytic properties.
2007
Hanczyc, Martin Michael; Mansy, Sheref Samir; J. W., Szostak
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/89316
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 87
  • OpenAlex ND
social impact