Fatty Acid Synthase (FASN), a cytoplasmic biosynthetic enzyme, is the major source of long-chain fatty acids, particularly palmitate. Caveolin-1 (Cav-1) is a palmitoylated lipid raft protein that plays a key role in signal transduction and cholesterol transport. Both proteins have been implicated in prostate cancer (PCa) progression, and Cav-1 regulates FASN expression in a mouse model of aggressive PCa. We demonstrate that FASN and Cav-1 are coordinately upregulated in human prostate tumors in a hormone-insensitive manner. Levels of FASN and Cav-1 protein expression discriminated between localized and metastatic cancers, and the two proteins exhibited analogous subcellular locations in a tumor subset. Endogenous FASN and Cav-1 were reciprocally co-immunoprecipitated from human and murine PCa cells, indicating that FASN forms a complex with Cav-1. FASN, a cytoplasmic enzyme, was induced to associate transiently with lipid raft membranes following alterations in signal transduction within the Src, Akt and EGFR pathways, suggesting that co-localization of FASN and Cav-1 is dependent on activation of upstream signaling mediators. A Cav-1 palmitoylation mutant, Cav-1(C133/143/156S), that prevents phosphorylation by Src, did not interact with FASN. When overexpressed in Cav-1-negative PCa cells, Cav-1(C133/143/156S) caused a reduction of both Src and Akt levels, as well as of their active, phosphorylated forms, in comparison with wild type Cav-1. These findings suggest that FASN and Cav-1 physically and functionally interact in PCa cells. They also imply that palmitoylation within this complex is involved in tumor growth and survival.

Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase.

Demichelis, Francesca;
2008

Abstract

Fatty Acid Synthase (FASN), a cytoplasmic biosynthetic enzyme, is the major source of long-chain fatty acids, particularly palmitate. Caveolin-1 (Cav-1) is a palmitoylated lipid raft protein that plays a key role in signal transduction and cholesterol transport. Both proteins have been implicated in prostate cancer (PCa) progression, and Cav-1 regulates FASN expression in a mouse model of aggressive PCa. We demonstrate that FASN and Cav-1 are coordinately upregulated in human prostate tumors in a hormone-insensitive manner. Levels of FASN and Cav-1 protein expression discriminated between localized and metastatic cancers, and the two proteins exhibited analogous subcellular locations in a tumor subset. Endogenous FASN and Cav-1 were reciprocally co-immunoprecipitated from human and murine PCa cells, indicating that FASN forms a complex with Cav-1. FASN, a cytoplasmic enzyme, was induced to associate transiently with lipid raft membranes following alterations in signal transduction within the Src, Akt and EGFR pathways, suggesting that co-localization of FASN and Cav-1 is dependent on activation of upstream signaling mediators. A Cav-1 palmitoylation mutant, Cav-1(C133/143/156S), that prevents phosphorylation by Src, did not interact with FASN. When overexpressed in Cav-1-negative PCa cells, Cav-1(C133/143/156S) caused a reduction of both Src and Akt levels, as well as of their active, phosphorylated forms, in comparison with wild type Cav-1. These findings suggest that FASN and Cav-1 physically and functionally interact in PCa cells. They also imply that palmitoylation within this complex is involved in tumor growth and survival.
D. D., Vizio; R. M., Adam; J., Kim; R., Kim; F., Sotgia; T., Williams; Demichelis, Francesca; K. R., Solomon; M., Loda; M. A., Rubin; M. P., Lisanti; M. R., Freeman
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/88974
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 42
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 75
social impact