Wavelets have proved particularly effective for extracting discriminative features in ECG signal classification. In this paper, we show that wavelet performances in terms of classification accuracy can be pushed further by customizing them for the considered classification task. A novel approach for generating the wavelet that best represents the ECG beats in terms of discrimination capability is proposed. It makes use of the polyphase representation of the wavelet filter bank and formulates the design problem within a particle swarm optimization (PSO) framework. Experimental results conducted on the benchmark MIT/BIH arrhythmia database with the state-of-the-art support vector machine (SVM) classifier confirm the superiority in terms of classification accuracy and stability of the proposed method over standard wavelets (i.e., Daubechies and Symlet wavelets). © 2011 Elsevier Ltd. All rights reserved.

A Wavelet Optimization Approach for ECG Signal Classification

Melgani, Farid
2012-01-01

Abstract

Wavelets have proved particularly effective for extracting discriminative features in ECG signal classification. In this paper, we show that wavelet performances in terms of classification accuracy can be pushed further by customizing them for the considered classification task. A novel approach for generating the wavelet that best represents the ECG beats in terms of discrimination capability is proposed. It makes use of the polyphase representation of the wavelet filter bank and formulates the design problem within a particle swarm optimization (PSO) framework. Experimental results conducted on the benchmark MIT/BIH arrhythmia database with the state-of-the-art support vector machine (SVM) classifier confirm the superiority in terms of classification accuracy and stability of the proposed method over standard wavelets (i.e., Daubechies and Symlet wavelets). © 2011 Elsevier Ltd. All rights reserved.
2012
4
A., Daamouche; L., Hamami; N., Alajlan; Melgani, Farid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/88943
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 176
  • ???jsp.display-item.citation.isi??? 131
  • OpenAlex ND
social impact