We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements.

Inverse source problems for eddy current equations / Rodrıguez, Ana Alonso; Camaño, Jessika; Valli, Alberto. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 28:1(2012), pp. 015006-1-015006-15. [10.1088/0266-5611/28/1/015006]

Inverse source problems for eddy current equations

Rodrıguez, Ana Alonso
Primo
;
Valli, Alberto
Ultimo
2012-01-01

Abstract

We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements.
2012
1
Rodrıguez, Ana Alonso; Camaño, Jessika; Valli, Alberto
Inverse source problems for eddy current equations / Rodrıguez, Ana Alonso; Camaño, Jessika; Valli, Alberto. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 28:1(2012), pp. 015006-1-015006-15. [10.1088/0266-5611/28/1/015006]
File in questo prodotto:
File Dimensione Formato  
inverse.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 196.5 kB
Formato Adobe PDF
196.5 kB Adobe PDF   Visualizza/Apri
paper.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 212.07 kB
Formato Adobe PDF
212.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/88760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact