The dimensional and geometrical characteristics of Charpy bars produced with two different steels were investigated to evaluate the effect of increasing the sintering temperature from 1120 °C (conventional sintering temperature) up to 1350 °C. The problem was approached from the Geometric Dimensioning and Tolerancing (GD&T) point of view, referring to the standard ASME Y14.5 (2009). The dimensional and geometrical characteristics were evaluated using a Coordinate Measuring Machine (CMM), measuring the surfaces by scanning mode. The work highlights that the increase in the sintering temperature, aimed at improving the mechanical properties, does not prevent the main benefit of this technology, i.e., the possibility of producing parts with good dimensional and geometrical precision. Moreover, a methodology establishing the measurement procedures and data processing, to be used in future work for the characterisation of more complex shapes, was defined.

Influence of sintering temperature on the shrinkage and geometrical characteristics of steel parts produced by Powder Metallurgy

Cristofolini, Ilaria;Menapace, Cinzia;Molinari, Alberto
2010-01-01

Abstract

The dimensional and geometrical characteristics of Charpy bars produced with two different steels were investigated to evaluate the effect of increasing the sintering temperature from 1120 °C (conventional sintering temperature) up to 1350 °C. The problem was approached from the Geometric Dimensioning and Tolerancing (GD&T) point of view, referring to the standard ASME Y14.5 (2009). The dimensional and geometrical characteristics were evaluated using a Coordinate Measuring Machine (CMM), measuring the surfaces by scanning mode. The work highlights that the increase in the sintering temperature, aimed at improving the mechanical properties, does not prevent the main benefit of this technology, i.e., the possibility of producing parts with good dimensional and geometrical precision. Moreover, a methodology establishing the measurement procedures and data processing, to be used in future work for the characterisation of more complex shapes, was defined.
2010
Cristofolini, Ilaria; A., Rao; Menapace, Cinzia; Molinari, Alberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/87268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact