This paper investigates the mechanical characterisation of a joint, suitable for different configurations within a heavy timber frame, consisting of a wooden element connected to a steel stub by means of an end-plate and glued-in steel rods. This connection system has some interesting properties in terms of mechanical performance, versatility and prefabrication. An analytical model to predict the joint response in terms of its key parameters (e.g. failure mode, ultimate resistance, stiffness and rotation capacity) is proposed and validated through an extensive experimental programme. The component method, originally proposed for semi-rigid joints in steel frameworks, is adapted in order to set up a feasible general model for steel–timber joints, enabling application of the capacity design approach and offering the required ductility for applications in seismic zones. The tests carried out indicate satisfactory agreement between theoretical and experimental results: the reliable prediction of joint failure modes allows design of moment-resistant connections that can sustain high plastic deformation without brittle rupture, with a remarkable degree of global ductility and energy dissipation under alternate loading.

Ductile moment-resistant steel-timber connections

Andreolli, Mauro;Piazza, Maurizio;Tomasi, Roberto;Zandonini, Riccardo
2011

Abstract

This paper investigates the mechanical characterisation of a joint, suitable for different configurations within a heavy timber frame, consisting of a wooden element connected to a steel stub by means of an end-plate and glued-in steel rods. This connection system has some interesting properties in terms of mechanical performance, versatility and prefabrication. An analytical model to predict the joint response in terms of its key parameters (e.g. failure mode, ultimate resistance, stiffness and rotation capacity) is proposed and validated through an extensive experimental programme. The component method, originally proposed for semi-rigid joints in steel frameworks, is adapted in order to set up a feasible general model for steel–timber joints, enabling application of the capacity design approach and offering the required ductility for applications in seismic zones. The tests carried out indicate satisfactory agreement between theoretical and experimental results: the reliable prediction of joint failure modes allows design of moment-resistant connections that can sustain high plastic deformation without brittle rupture, with a remarkable degree of global ductility and energy dissipation under alternate loading.
SB2
Andreolli, Mauro; Piazza, Maurizio; Tomasi, Roberto; Zandonini, Riccardo
File in questo prodotto:
File Dimensione Formato  
2011-[IJP5.]-ISI-Andreollietal-Ductile_Moment_resistant-ICE-stbu164.pdf

Solo gestori archivio

Descrizione: articolo completo
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/86727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 25
social impact