Exploiting wind energy in complex sites like mountain terrains implies the necessity for remote structural health monitoring of the wind towers. In fact, such slender vertical structures exposed to wind may experience large vibrations and repeated stress cycles leading to fatigue cracking. Possible strategies for remote fatigue damage detection are investigated. Specifically, this paper is focused on the use of suitable strain sensors for crack detection in critical sites of the structure, suggesting several strategies taking into account the possibility of wind direction changes and/or wind calm phases. They are based on a radial arrangement of strain sensors around the tower periphery in the vicinity of the base weld joint. The most promising strategy uses the strain difference between adjacent strain sensors as an index of the presence of a crack. The number of sensors to be installed is dictated by the minimum crack size to be detected, which in turn depends on the expected extreme wind conditions and programmed inspection/repair schedule for the structure.

Structural health monitoring of wind towers: remote damage detection using strain sensors

Benedetti, Matteo;Fontanari, Vigilio;Zonta, Daniele
2011-01-01

Abstract

Exploiting wind energy in complex sites like mountain terrains implies the necessity for remote structural health monitoring of the wind towers. In fact, such slender vertical structures exposed to wind may experience large vibrations and repeated stress cycles leading to fatigue cracking. Possible strategies for remote fatigue damage detection are investigated. Specifically, this paper is focused on the use of suitable strain sensors for crack detection in critical sites of the structure, suggesting several strategies taking into account the possibility of wind direction changes and/or wind calm phases. They are based on a radial arrangement of strain sensors around the tower periphery in the vicinity of the base weld joint. The most promising strategy uses the strain difference between adjacent strain sensors as an index of the presence of a crack. The number of sensors to be installed is dictated by the minimum crack size to be detected, which in turn depends on the expected extreme wind conditions and programmed inspection/repair schedule for the structure.
2011
20
Benedetti, Matteo; Fontanari, Vigilio; Zonta, Daniele
File in questo prodotto:
File Dimensione Formato  
SMS2011.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/86519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 52
social impact