Experimental observations clearly show that the performance of dielectric elastomericbased devices can be considerably improved using composite materials. A critical issue in the development of composite dielectric materials toward applications is the prediction of their failure mechanisms due to the applied electromechanical loads. In this paper we investigate analytically the influence of electromechanical finite deformations on the stability of multilayered soft dielectrics under plane-strain conditions. Four different criteria are considered: (i) loss of positive definiteness of the tangent electroelastic constitutive operator, (ii) existence of diffuse modes of bifurcation (microscopic modes), (iii) loss of strong ellipticity of the homogenized continuum (localized or macroscopic modes), and (iv) electric breakdown. While the formulation is developed for generic isotropic hyperelastic dielectrics, results are presented for the special class of ideal dielectrics incorporating a neo-Hookean elastic response. The effect of material properties and loading conditions is investigated, providing a detailed picture of the different possible failure modes.

Instability in multilayered soft dielectrics

Bertoldi, Katia;Gei, Massimiliano
2011-01-01

Abstract

Experimental observations clearly show that the performance of dielectric elastomericbased devices can be considerably improved using composite materials. A critical issue in the development of composite dielectric materials toward applications is the prediction of their failure mechanisms due to the applied electromechanical loads. In this paper we investigate analytically the influence of electromechanical finite deformations on the stability of multilayered soft dielectrics under plane-strain conditions. Four different criteria are considered: (i) loss of positive definiteness of the tangent electroelastic constitutive operator, (ii) existence of diffuse modes of bifurcation (microscopic modes), (iii) loss of strong ellipticity of the homogenized continuum (localized or macroscopic modes), and (iv) electric breakdown. While the formulation is developed for generic isotropic hyperelastic dielectrics, results are presented for the special class of ideal dielectrics incorporating a neo-Hookean elastic response. The effect of material properties and loading conditions is investigated, providing a detailed picture of the different possible failure modes.
2011
Bertoldi, Katia; Gei, Massimiliano
File in questo prodotto:
File Dimensione Formato  
jmps2011-18.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/84759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 155
  • ???jsp.display-item.citation.isi??? 145
  • OpenAlex ND
social impact