Various Nano Building Blocks (NBBs) such as polyhedral silsesquioxanes (POSS), functionalized metal oxide particles and transition metal oxoclusters have been already developed and used to improve thermal and mechanical properties of organic polymers. The NBBs ideal for the preparation of hybrid materials and nanocomposites are monodispersed, well-defined objects capped with polymerisable functions suitable for copolymerisation with organic monomers. In this study zirconium oxoclusters (ZrNBB) were obtained as a crystalline precipitate by reaction between zirconium propoxide and vinylacetic acid. They were post-functionalised by copolymerisation with vinyl trimethoxysilane in different molar ratios. The hybrid samples were prepared both with the organosilane pre-hydrolysis step and without adding water. Hybrid materials were obtained through the radical polymerization process by adding benzoyl peroxide (BPO). Silane pre-hydrolysis prevents bulk samples from being obtained. The polymerization process was studied using differential scanning calorimetry (DSC), and the shear storage modulus (G′) and loss modulus (G″) of hybrid polymers were investigated by dynamic mechanical spectroscopy (DMS). Multinuclear liquid- and solid-state NMR analyses and Fourier transform infrared (FTIR) spectroscopy were used to characterize the reagents and hybrid materials, and to study the influence of the synthesis conditions on condensation and polymerization.

Hybrid organic–inorganic materials using zirconium based NBBs and vinyltrimethoxysilane: effect of pre-hydrolysis of silane

Di Maggio, Rosa;Dirè, Sandra;Callone, Emanuela;Girardi, Fabrizio;
2010-01-01

Abstract

Various Nano Building Blocks (NBBs) such as polyhedral silsesquioxanes (POSS), functionalized metal oxide particles and transition metal oxoclusters have been already developed and used to improve thermal and mechanical properties of organic polymers. The NBBs ideal for the preparation of hybrid materials and nanocomposites are monodispersed, well-defined objects capped with polymerisable functions suitable for copolymerisation with organic monomers. In this study zirconium oxoclusters (ZrNBB) were obtained as a crystalline precipitate by reaction between zirconium propoxide and vinylacetic acid. They were post-functionalised by copolymerisation with vinyl trimethoxysilane in different molar ratios. The hybrid samples were prepared both with the organosilane pre-hydrolysis step and without adding water. Hybrid materials were obtained through the radical polymerization process by adding benzoyl peroxide (BPO). Silane pre-hydrolysis prevents bulk samples from being obtained. The polymerization process was studied using differential scanning calorimetry (DSC), and the shear storage modulus (G′) and loss modulus (G″) of hybrid polymers were investigated by dynamic mechanical spectroscopy (DMS). Multinuclear liquid- and solid-state NMR analyses and Fourier transform infrared (FTIR) spectroscopy were used to characterize the reagents and hybrid materials, and to study the influence of the synthesis conditions on condensation and polymerization.
2010
Di Maggio, Rosa; Dirè, Sandra; Callone, Emanuela; Girardi, Fabrizio; G., Kickelbick
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/80558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact