Remote sensing hyperspectral sensors are important and powerful instruments for addressing classification problems in complex forest scenarios, as they allow one a detailed characterization of the spectral behavior of the considered information classes. However, the processing of hyperspectral data is particularly complex both from a theoretical viewpoint [e.g. problems related to the Hughes phenomenon (Hughes, 1968) and from a computational perspective. Despite many previous investigations that have been presented in the literature on feature reduction and feature extraction in hyperspectral data, only a few studies have analyzed the role of spectral resolution on the classification accuracy in different application domains. In this paper, we present an empirical study aimed at understanding the relationship among spectral resolution, classifier complexity, and classification accuracy obtained with hyperspectral sensors for the classification of forest areas. We considered two differe...

The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas

Dalponte, Michele;Bruzzone, Lorenzo;
2009-01-01

Abstract

Remote sensing hyperspectral sensors are important and powerful instruments for addressing classification problems in complex forest scenarios, as they allow one a detailed characterization of the spectral behavior of the considered information classes. However, the processing of hyperspectral data is particularly complex both from a theoretical viewpoint [e.g. problems related to the Hughes phenomenon (Hughes, 1968) and from a computational perspective. Despite many previous investigations that have been presented in the literature on feature reduction and feature extraction in hyperspectral data, only a few studies have analyzed the role of spectral resolution on the classification accuracy in different application domains. In this paper, we present an empirical study aimed at understanding the relationship among spectral resolution, classifier complexity, and classification accuracy obtained with hyperspectral sensors for the classification of forest areas. We considered two differe...
2009
11
Dalponte, Michele; Bruzzone, Lorenzo; L., Vescovo; D., Gianelle
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/78808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 181
  • ???jsp.display-item.citation.isi??? 165
  • OpenAlex ND
social impact