This paper analyzes the problem of change detection in very high resolution (VHR) multitemporal images by studying the effects of residual misregistration [registration noise (RN)] between images acquired on the same geographical area at different times. In particular, according to an experimental analysis driven from a theoretical study, the main effects of RN on VHR images are identified and some important properties are derived and described in a polar framework for change vector analysis. In addition, a technique for an adaptive and unsupervised explicit estimation of the RN distribution in the polar domain is proposed. This technique derives the RN distribution according to both a multiscale analysis of the distribution of spectral change vectors and the Parzen windows method. Experimental results obtained on simulated and real multitemporal data sets confirm the validity of the proposed analysis, the reliability of the derived properties on RN, and the effectiveness of the propos...

Analysis and Adaptive Estimation of the Registration Noise Distribution in Multitemporal VHR Images

Bovolo, Francesca;Bruzzone, Lorenzo;Marchesi, Silvia
2009-01-01

Abstract

This paper analyzes the problem of change detection in very high resolution (VHR) multitemporal images by studying the effects of residual misregistration [registration noise (RN)] between images acquired on the same geographical area at different times. In particular, according to an experimental analysis driven from a theoretical study, the main effects of RN on VHR images are identified and some important properties are derived and described in a polar framework for change vector analysis. In addition, a technique for an adaptive and unsupervised explicit estimation of the RN distribution in the polar domain is proposed. This technique derives the RN distribution according to both a multiscale analysis of the distribution of spectral change vectors and the Parzen windows method. Experimental results obtained on simulated and real multitemporal data sets confirm the validity of the proposed analysis, the reliability of the derived properties on RN, and the effectiveness of the propos...
2009
8
Bovolo, Francesca; Bruzzone, Lorenzo; Marchesi, Silvia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/78768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 45
  • OpenAlex ND
social impact