Content-based image retrieval (CBIR) has become one of the most active research areas in the past few years. Most of the attention from the research has been focused on indexing techniques based on global feature distributions. However, these global distributions have limited discriminating power because they are unable to capture local image information. The use of interest points in content-based image retrieval allow image index to represent local properties of the image. Classic corner detectors can be used for this purpose. However, they have drawbacks when applied to various natural images for image retrieval, because visual features need not be corners and corners may gather in small regions. In this paper, we present a salient point detector. The detector is based on wavelet transform to detect global variations as well as local ones. The wavelet-based salient points are evaluated for image retrieval with a retrieval system using color and texture features. The results show tha...

Image Retrieval Using Wavelet-based Salient Points

Sebe, Niculae;
2001-01-01

Abstract

Content-based image retrieval (CBIR) has become one of the most active research areas in the past few years. Most of the attention from the research has been focused on indexing techniques based on global feature distributions. However, these global distributions have limited discriminating power because they are unable to capture local image information. The use of interest points in content-based image retrieval allow image index to represent local properties of the image. Classic corner detectors can be used for this purpose. However, they have drawbacks when applied to various natural images for image retrieval, because visual features need not be corners and corners may gather in small regions. In this paper, we present a salient point detector. The detector is based on wavelet transform to detect global variations as well as local ones. The wavelet-based salient points are evaluated for image retrieval with a retrieval system using color and texture features. The results show tha...
2001
4
Q., Tian; Sebe, Niculae; M. S., Lew; E., Loupias; T. S., Huang
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/7761
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 117
  • ???jsp.display-item.citation.isi??? 87
  • OpenAlex ND
social impact